
Nemesys Syringe Pump M / S
Firmware Specification

ORIGINAL MANUAL - FEBRUARY 2024

CETONI GmbH

Wiesenring 6

07554 Korbussen

Germany

T +49 (0) 36602 338-0

F +49 (0) 36602 338-11

E info@cetoni.de

www.cetoni.de

2 Nemesys Syringe Pump M / S - Firmware Specification

http://www.cetoni.de/

Nemesys Syringe Pump M / S - Firmware Specification 3

1 Summaries and directories

1.1 Table of contents
1 Summaries and directories 5

1.1 Table of contents 5

1.2 Change history 9

2 About this Document 11

2.1 Intended Purpose 11

2.2 Target Audience 11

2.3 Symbols and Signal Words Used 11

3 System Overview 13

3.1 General Device Architecture 13

3.2 Object Dictionary 14

4 CAN Communication 17

4.1 Introduction 17

4.2 Reference Model of Data Communication 17

4.3 CAN-Bus 18

4.3.1 CAN in the OSI reference model 18

4.3.2 Bus topology and data rate 18

4.3.3 Message transfer 18

4.3.4 Bus access 19

4.3.5 Length of the payload data 19

4.3.6 Structure of CAN Frames 19

4.3.7 Error Checking and Fault Confinement 20

Nemesys Syringe Pump M / S - Firmware Specification 5

4.4 CANopen Basics 21

4.4.1 Introduction 21

4.4.2 Physical Structure of the CAN Network 22

4.5 Communication Objects 23

4.5.1 Service Data Objects – SDOs 25

4.5.2 Process Data Objects – PDOs 26

4.5.3 Sync Object 28

4.6 Network Management – NMT 30

4.6.1 NMT Services 30

4.7 CANopen Error Handling – EMCY 33

4.7.1 Principle 33

4.7.2 Emergency Message Frame 33

5 CANopen Serial Interface (CSI) 34

5.1 Overview 34

5.2 Physical Layer 34

5.2.1 Electrical Standard 34

5.2.2 Medium 35

6 Industrial RS232 Protocol with CRC checksum 37

6.1 Introduction 37

6.2 Protocol and Flow Control 37

6.3 Frame Structure 39

6.4 CRC – Cyclic Redundancy Check 40

6.4.1 CRC Calculation 40

6.4.2 CRC Algorithm 40

6.5 Byte Stuffing 41

6.6 Transmission Byte Order 42

6.7 Data Format 42

6.8 Timeout Handling 42

6.9 Slave (device) state machine 44

6.10 Command Reference 45

6 Nemesys Syringe Pump M / S - Firmware Specification

6.10.1 Read Functions 45

6.10.2 Write Functions 46

6.11 Example Frames 47

6.11.1 Reading Object 0x1000 – Device Type 47

6.11.2 Writing Object 0x1017 – Producer Heartbeat Time 51

6.12 Communication Error Code Definition 54

7 Pump Control 55

7.1 Object Dictionary 55

7.2 Operating Modes 56

7.3 Translation of volume / flow units 56

7.3.1 Introduction 56

7.3.2 Reading out device parameters 57

7.3.3 Position value conversion 58

7.3.4 Velocity value conversion 59

7.3.5 Volume value conversions 61

7.3.6 Flow value conversions 62

7.4 Reading out device configuration 63

7.4.1 Device Overview 63

7.4.2 Calculating the travel range 63

7.4.3 Calculating the maximum flow rate 65

7.4.4 Reading out the device type 65

7.5 Initializing 66

7.6 Pump Drive Control 67

7.6.1 Drive State Machine 67

7.6.2 Reading State of Drive 68

7.6.3 Device Control via Controlword 72

7.7 Dosing 76

7.7.1 Introduction 76

7.7.2 Starting dosage 76

Nemesys Syringe Pump M / S - Firmware Specification 7

7.7.3 Stopping dosage 79

7.8 Valve Switching 80

7.9 Reading Analog Inputs 81

7.10 Force Monitoring 82

7.10.1 Overview 82

7.10.2 Reading Internal Force Sensor 82

7.10.3 Setting a custom force limit 83

7.10.4 Reading Safety Stop Input 84

7.10.5 Enable / Disable Force Monitoring 84

7.10.6 How to resolve a force overload situation 85

8 Development Tools 87

8.1 Tools for RS232 Protocol Implementation 87

8.1.1 EPOS Studio 87

8.1.2 Serial Port Monitor 89

8.1.3 Nemesys V4 RS232 Library Documentation 89

8.2 Tools for CANopen implementation 90

8.2.1 EPOS Studio 90

8.2.2 CETONI Elements CANopen Tools Plugin 90

8 Nemesys Syringe Pump M / S - Firmware Specification

1.2 Change history
REVISION CHANGE

21.04.2021 Creation of document

15.02.2024 Fixed Object Index of Unit Velocity Object 0x60A9

Updated unit conversion section with right unit objects

Nemesys Syringe Pump M / S - Firmware Specification 9

2 About this Document

2.1 Intended Purpose
The purpose of the present document is to familiarize you with the described equipment and the tasks

on safe and adequate installation and/or commissioning. Observing the described instructions in this

document will help you:

• to avoid dangerous situations,

• to keep installation and/or commissioning time at a minimum and

• to increase reliability and service life of the described equipment.

Use for other and/or additional purposes is not permitted. cetoni, the manufacturer of the equipment

described, does not assume any liability for loss or damage that may arise from any other and/or

additional use than the intended purpose.

2.2 Target Audience
This document is meant for trained and skilled personnel working with the equipment described. It

conveys information on how to understand and fulfill the respective work and duties. This document is a

reference book. It does require particular knowledge and expertise specific to the equipment described.

2.3 Symbols and Signal Words Used
The following symbols are used in this manual and are designed to aid your navigation through this

document:

Nemesys Syringe Pump M / S - Firmware Specification 11

HINT . Describes practical tips and useful information to facilitate the handling of the

software.

IMPORTANT . Describes important information and other especially useful notes, in

which no dangerous or damaging situations can arise.

ATTENTION . Indicates a potentially damaging situation. Failure to avoid this situation

may result in damage to the product or anything nearby.

CAUTION . Describes a situation that may be dangerous. If this aspect is not avoided,

light or minor injuries as well as damage to property could result.

12 Nemesys Syringe Pump M / S - Firmware Specification

3 System Overview

3.1 General Device Architecture
The device implements a CANopen slave device. CANopen is the internationally standardized (EN

50325-4) higher-layer protocol for embedded control system. The set of CANopen specification

comprises the application layer and communication profile as well as application, device, and interface

profiles. CANopen provides very flexible configuration capabilities. These specifications are developed

and maintained by CiA members.

The communication interface of the device follows the CiA CANopen specifications as follows:

• CiA 301 – Application Layer and Communication Profile

• CiA 306 – Electronic Data Sheet Specification

• CiA 303-2 – Representation of SI units and prefixes

• CiA 303-3 – Indicator Specification

A CANopen device can be logically structured in three parts.

One part provides the communication interface (CAN, RS232) and another part provides the device's

application, which controls e.g. the Input/Output (I/O) lines of the device in case of an I/O module.

The interface between the application and the CAN-interface is implemented in the object dictionary.

The object dictionary is unique for any CANopen device. It is comparable to a parameter list and offers

the access to the supported configuration- and process data.

The following section explains the basic concepts related to the CANopen protocol application layer.

This document is intended as a basic overview only, and users are encouraged to review the CiA DS 301

specification for more information.

Nemesys Syringe Pump M / S - Firmware Specification 13

3.2 Object Dictionary
The most significant part of any CANopen device is the Object Dictionary. It is essentially a grouping of

objects accessible via the network (via CAN or RS232) in an ordered, predefined fashion. The object

dictionary is essentially a table, that stores configuration and process data. The figure below shows an

example of an object dictionary. Each object within the dictionary is addressed using a 16-bit index ❶

and an 8-bit subindex ❷.

The 16-bit index ❶ is used to address all entries within the Object Dictionary. In case of a simple

variable, it references the value of this variable directly. In case of records and arrays however, the index

addresses the entire data structure. The subindex ❷ permits individual elements of a data structure to

be accessed via the network.

• For single Object Dictionary entries (such as UNSIGNED8, BOOLEAN, INTEGER32, etc.), the

subindex value is always zero.

• For complex Object Dictionary entries (such as arrays or records with multiple data fields), the

subindex references fields within a data structure pointed to by the main index. This allows for

up to 255 sub-entries at each index. Each entry can be variable in type and length.

14 Nemesys Syringe Pump M / S - Firmware Specification

Figure 1: Object dictionary example

The overall layout of the standard Object Dictionary conforms to other industrial field bus concepts.

Index Description

0000h Reserved

0001h-009Fh Data types (not supported)

00A0h-0FFFh Reserved

1000h-1FFFh Communication Profile Area (CiA 301)

2000h-5FFFh Manufacturer-specific Profile Area

6000h-9FFFh Standardized Device Area (e.g. CiA 401 – I/O Modules)

A000h-FFFFh Reserved

Table 1: Object dictionary layout

Access to each object dictionary entry is possible via SDO transfer (CAN) or via RS232 protocol by

simply providing the index and sub index of the object dictionary entry to access.

Nemesys Syringe Pump M / S - Firmware Specification 15

4 CAN Communication

4.1 Introduction
This chapter provides general information about CAN communication and CANopen application layer.

The information is relevant only for devices that support CAN communication via CAN interface. If your

device only supports serial communication via RS232 CANopen Serial Interface (CSI), you can skip this

chapter.

HINT . An excellent and easy to understand introduction to CAN and CANopen is

available here:

http://www.canopensolutions.com/english/about_canopen/CANopen-application-layer-

basics.shtml

HINT . You can skip this chapter if your device does not support communication via

CAN interface.

4.2 Reference Model of Data Communication
The Open Systems Interconnection Reference Model (OSI Reference Model) forms the basis for the

description of communication systems today. The OSI model describes data communication systems in

the form of a layer model, consisting of seven different layers, and assigns specific services to each layer.

Simpler communication systems do not require all the functionalities of the OSI model. In general, only

three layers (physical layer, data link layer and application layer) are relevant for data communication in

the automation area.

The three layers shown in the figure implement the most important tasks of data communication in the

fieldbus area.

Nemesys Syringe Pump M / S - Firmware Specification 17

http://www.canopensolutions.com/english/about_canopen/CANopen-application-layer-basics.shtml
http://www.canopensolutions.com/english/about_canopen/CANopen-application-layer-basics.shtml

Application Process

Layer 7 Application Layer

Layer 2 Data Link Layer

Layer 1 Physical Layer

4.3 CAN-Bus

4.3.1 CAN in the OSI reference model

The CAN protocol was specified by the company BOSCH. Regarding the OSI reference model, the CAN

specification implements the data link layer completely and the physical layer partially. The physical

signal representation is defined in the CAN protocol, while the form of the bus medium and the bus

coupling was not specified.

4.3.2 Bus topology and data rate

The CAN bus uses a linear bus topology. The number of nodes is not limited by the CAN protocol, but

depends on the performance of the driver chips used. Data rates up to 1 Mbit/s (network extension up

to 40 m) and network extensions up to 1,000 m (at 80 Kbit/s) are possible. Two-wire lines with

differential levels as well as fibre optic cables are possible as transmission medium.

4.3.3 Message transfer

The message receiver is not addressed, but the CAN messages are identified by a unique identifier – the

CAN ID. Message transmission is based on the producer-consumer principle. This means that a

message sent by one CAN node (producer) can be received by all other CAN nodes (consumers). On the

basis of the message identifier, a subscriber decides whether a message is relevant for him or not.

18 Nemesys Syringe Pump M / S - Firmware Specification

4.3.4 Bus access

The identifier of a CAN message determines its priority. The message with the lowest CAN ID has the

highest priority. Each message ID may only be sent from one CAN node in the system to avoid collisions.

If several CAN nodes start sending a message at the same time, a collision occurs. This conflict is

resolved by giving the message with the highest priority (with the lowest ID) bus access.

If the message with the highest priority has been sent, bus arbitration starts again for the remaining

messages until all messages have been sent. This ensures that messages are not destroyed or lost.

4.3.5 Length of the payload data

The maximum data length of a CAN message is limited to 8 bytes. This enables fully functional data

transmission in very difficult electromagnetic environments and guarantees short latency times for bus

access of high priority messages.

4.3.6 Structure of CAN Frames

The CAN specification distinguishes between two compatible message formats, the standard format

with 11 bit identifier and the extended format with 29 bit identifier. CETONI devices only use messages

with 11-bit identifiers. A CAN message in standard format is shown in figure below and consists of:

• The Data Frame begins with a dominant Start of Frame (SOF) bit for hard synchronization of all

nodes.

• The SOF bit is followed by the Arbitration Field reflecting content and priority of the message.

• The next field – the Control Field – specifies mainly the number of bytes of data contained in

the message.

• The Cyclic Redundancy Check (CRC) field is used to detect possible transmission errors. It

consists of a 15-bit CRC sequence completed by the recessive CRC delimiter bit.

Nemesys Syringe Pump M / S - Firmware Specification 19

• During the Acknowledgment (ACK) field, the transmitting node sends out a recessive bit. Any

node that has received an error-free frame acknowledges the correct reception of the frame by

returning a dominant bit.

• The recessive bits of the End of Frame (EOF) terminate the Data Frame. Between two frames, a

recessive 3-bit Intermission field must be present.

CETONI devices only use messages with 11-bit identifiers:

• The Identifier’s (COB-ID) length in the Standard Format is 11 bit.

• The Identifier is followed by the RTR (Remote Transmission Request) bit. In Data Frames, the

RTR bit must be dominant, within a Remote Frame, the RTR bit must be recessive.

• The Base ID is followed by the IDE (Identifier Extension) bit transmitted dominant in the

Standard Format (within the Control Field).

• The Control Field in Standard Format includes the Data Length Code (DLC), the IDE bit, which is

transmitted dominant and the reserved bit r0, also transmitted dominant.

• The reserved bits must be sent dominant, but receivers accept dominant and recessive bits in all

combinations.

4.3.7 Error Checking and Fault Confinement

The robustness of CAN may be attributed in part to its abundant error-checking procedures. The CAN

protocol incorporates five methods of error checking: three at the message level and two at the bit level.

If a message fails any one of these error detection methods, it is not accepted and an error frame is

generated from the receiving node. This forces the transmitting node to resend the message until it is

received correctly. However, if a faulty node hangs up a bus by continuously repeating an error, its

transmit capability is removed by its controller after an error limit is reached. The following methods for

error detection are used:

• Error checking at the message level is enforced by the CRC and the ACK slots. The 16-bit CRC

20 Nemesys Syringe Pump M / S - Firmware Specification

Figure 2: Standard frame format

contains the checksum of the preceding application data for error detection with a 15-bit

checksum and 1-bit delimiter. The ACK field is two bits long and consists of the acknowledge bit

and an acknowledge delimiter bit.

• Also at the message level is a form check. This check looks for fields in the message which must

always be recessive bits. If a dominant bit is detected, an error is generated. The bits checked are

the SOF, EOF, ACK delimiter, and the CRC delimiter bits

• At the bit level, each bit transmitted is monitored by the transmitter of the message. If a data bit

(not arbitration bit) is written onto the bus and its opposite is read, an error is generated. The

only exceptions to this are with the message identifier field which is used for arbitration, and

the acknowledge slot which requires a recessive bit to be overwritten by a dominant bit.

• The final method of error detection is with the bit-stuffing rule where after five consecutive bits

of the same logic level, if the next bit is not a complement, an error is generated.

CAN uses the principle of error signalling. Detected errors are reported to the other network users by

sending an error frame. This ensures that the communication with all functioning CAN nodes of a

network is error-free and consistent and guarantees very short error response times.

4.4 CANopen Basics

4.4.1 Introduction

CANopen is a standardized application for distributed automation systems based on CAN (Controller

Area Network) offering the following performance features:

• Transmission of time-critical process data according to the producer consumer principle

• Standardized device description (data, parameters, functions, programs) in the form of the so-

called "object dictionary". Access to all "objects" of a device with standardized transmission

protocol according to the client-server principle

• Standardized services for device monitoring (node guarding/heartbeat), error signalisation

(emergency messages) and network coordination ("network management")

• Standardized system services for synchronous operations (synchronization message), central

Nemesys Syringe Pump M / S - Firmware Specification 21

time stamp message

• Standardized help functions for configuring baud rate and device identification number via the

bus

• Standardized assignment pattern for message identifiers for simple system configurations in the

form of the so-called "predefined connection set"

Subsequently described are the CANopen communication features most relevant to the CETONI

CANopen devices. For more detailed information consult above mentioned CANopen documentation.

The CANopen communication concept can be described similar to the ISO Open Systems

Interconnection (OSI) Reference Model. CANopen represents a standardized application layer and

communication profile

4.4.2 Physical Structure of the CAN Network

CANopen is a networking system based on the CAN serial bus. It assumes that the device’s hardware

features a CAN transceiver and a CAN controller as specified in ISO 11898. The physical medium is a

differently driven 2-wire bus line with common return. The underlying CAN architecture defines the

basic physical structure of the CANopen network. Therefore, a line (bus) topology is used. To avoid

reflections of the signals, both ends of the network must be terminated. In addition, the maximum

permissible branch line lengths for connection of the individual network nodes are to be observed.

22 Nemesys Syringe Pump M / S - Firmware Specification

Figure 3: Protocol Layer Interactions

The recommended permissible bit rates for a CANopen network are given in CiA 301: 10 kbps, 20 kbps,

50 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps and 1000 kbps. In CiA 301 a recommendation for the

configuration of the bit timing is also given.

Additionally, for CANopen, two additional conditions must be fulfilled:

• All nodes must be configured to the same bit rate and

• No node-ID may exist twice.

4.5 Communication Objects
CANopen uses communication objects for data transmission in the network. The following

communication objects are specified by CANopen:

• Service data objects (SDO) are used to access the entries in the object dictionary.

• Process data objects (PDO) are used for fast transmission of

process information

• Objects with special functions provide various system services (synchronization objects, time

service objects, emergency objects)

• Network management objects (NMT) are necessary to start, stop

and monitoring of network participants

Nemesys Syringe Pump M / S - Firmware Specification 23

Figure 4: ISO 11898 basic network setup

In a CAN network, all objects refer to a specific message identifier. This means that each communication

object has a unique CAN ID, and certain CAN message IDs are reserved for certain objects.

24 Nemesys Syringe Pump M / S - Firmware Specification

4.5.1 Service Data Objects – SDOs

With Service Data Objects (SDOs), the access to entries of a device Object Dictionary is provided. A

SDO is mapped to two CAN Data Frames with different identifiers, because communication is con-

firmed. By means of a SDO, a peer-to-peer communication channel between two devices may be estab-

lished. The owner of the accessed Object Dictionary is the server of the SDO. A device may support

more than one SDO, one supported SDO is mandatory and the default case.

Read and write access to the CANopen Object Dictionary is performed by SDOs. The Client/Server

Command Specifier contains the following information:

• download/upload

• request/response

• segmented/expedited transfer

• number of data bytes

• end indicator

• alternating toggle bit for each subsequent segment

SDOs are described by the communication parameter. The default Server SDO (S_SDO) is defined in the

entry “1200h”. In a CANopen network, up to 256 SDO channels requiring two CAN identifiers each may

be used.

Nemesys Syringe Pump M / S - Firmware Specification 25

Abbildung 4.1: Service Data Object (SDO)

4.5.2 Process Data Objects – PDOs

Process data represents data that can be changing in time, such as the inputs (i.e. sensors) and outputs

(i.e. motor drives) of the node controller. Process data is also stored in the object dictionary. However,

since SDO communication only allows access to one object dictionary index at a time, there can be a lot

of overhead for accessing continually changing data. In addition, the CANopen protocol has the

requirement that a node must be able to send its own data, without needing to be polled by the

CANopen master. Thus, a different method is used to transfer process data, using a communication

method called Process Data Objects (PDOs).

PDO communication can be described by the producer/consumer model. Process data can be

transmitted from one device (producer) to one another device (consumer) or to numerous other devices

(broadcasting). PDOs are transmitted in a non-confirmed mode. The producer sends a Transmit PDO

(TxPDO) with a specific identifier that corresponds to the identifier of the Receive PDO (RxPDO) of one

or more consumers.

26 Nemesys Syringe Pump M / S - Firmware Specification

Abbildung 4.2: Object Dictionary Access

There are two types of PDOs: transfer PDOs (TPDOs) and receive PDOs (RPDOs). A TPDO is the data

coming from the node (produced) and a RPDO is the data coming to the node (consumed). In addition,

there are two types of parameters for a PDO: the configuration parameters and the mapping

parameters. The section of the object dictionary reserved for PDO configuration and mapping

information are indices 1400h-1BFFh.

IMPORTANT . PDO communication is not permitted in NMT state Pre-Operational.

Switch to NMT Operational state to enable PDO transmission.

4.5.2.1 PDO CONFIGURATION PARAMETERS

The configuration parameters specify the COB-ID, the transmission type, inhibit time (TPDO only) and

the event timer, which are explained in this section. There are different methods through which a PDO

transfer can be initiated. These methods include event driven, time driven, individual polling and

synchronized polling. The type of transmission is specified in the configuration parameters of the PDO.

In event driven transmission, the PDO transfer is initiated when the process data in it changes.

• In time driven transmission, the PDO transfer occurs at a fixed time interval.

• In event-driven transmission a PDO transfer is triggered by the occurrence of an object-specific

event or change of process data

• In individual polling, the PDO transfer is initiated using a mechanism called remote request,

which is not commonly used.

Nemesys Syringe Pump M / S - Firmware Specification 27

Figure 5: Process Data Object (PDO)

• In synchronized polling, the PDO transfer is initiated using a SYNC signal. The sync signal is

frequently used as a global timer. For example, if the CANopen master sends out a SYNC

message, multiple nodes may be configured to see and respond to that SYNC. In this way, the

master is able to get a "snapshot" of multiple process objects at the same time.

4.5.2.2 PDO MAPPING PARAMETERS

The mapping parameters specify which object dictionary values are sent by a single PDO message. For

example, a single PDO message may contain data from object index 2001h, 2003h and 2005h.

4.5.3 Sync Object

The SYNC producer provides the synchronization signal for the SYNC consumer.

As the SYNC consumers receive the signal, they will commence carrying out their synchronous tasks. In

general, fixing of the transmission time of synchronous PDO messages coupled with the periodicity of

the SYNC Object’s transmission guarantees that sensors may arrange sampling of process variables and

that actuators may apply their actuation in a coordinated manner. The identifier of the SYNC Object is

available at index “1005h”.

28 Nemesys Syringe Pump M / S - Firmware Specification

Figure 6: TPDO 1 Communication Parameters (0x1801h) and Mapping Parameters (0x1A01h)

Synchronous transmission of a PDO means that the transmission is fixed in time with respect to the

transmission of the SYNC Object. The synchronous PDO is transmitted within a given time window

“synchronous window length” with respect to the SYNC transmission and, at the most, once for every

period of the SYNC. The time period between SYNC objects is specified by the parameter

“communication cycle period”.

CANopen distinguishes the following transmission modes:

• synchronous transmission

• asynchronous transmission

Synchronous PDOs are transmitted within the synchronous window after the SYNC object. The priority

of synchronous PDOs is higher than the priority of asynchronous PDOs.

Asynchronous PDOs and SDOs can be transmitted at every time with respect to their priority. Hence,

they may also be transmitted within the synchronous window.

Nemesys Syringe Pump M / S - Firmware Specification 29

Figure 4.3: Synchronization Object (SYNC)

Figure 7

4.6 Network Management – NMT
In addition to providing services and protocols for the transmission of process data and the

configuration of devices, the operation of a system distributed over a network requires functions for the

command control of the communication state of the individual network nodes. As data transmission by

CANopen devices is in many cases event-controlled, continual monitoring of the communication ability

of the network nodes is also required. CANopen provides so-called "network management" services and

protocols for these tasks, namely:

• control of the communication state of network nodes and

• node monitoring.

4.6.1 NMT Services

The CANopen network management is node-oriented and follows a master/slave structure. It requires

one device in the network that fulfils the function of the NMT Master. The other nodes are NMT Slaves.

Network management provides the following functionality groups:

• Module Control Services for initialization of NMT Slaves that want to take part in the

distributed application.

• Error Control Services for supervision of nodes’ and network’s communication status.

• Configuration Control Services for up/downloading of configuration data from/to a network

30 Nemesys Syringe Pump M / S - Firmware Specification

Figure 8: Synchronous PDO

module.

A NMT Slave represents that part of a node, which is responsible for the node’s NMT functionality. It is

uniquely identified by its module ID.

The CANopen NMT Slave devices implement a state machine that automatically brings every device to

“Pre-Operational” state, once powered and initialized.

The “Pre-Operational” state is primarily used for the configuration of CANopen devices. Therefore

exchange of process data (via PDOs) is not possible in this state. The entries of the device object

dictionaries can be accessed via "service data objects" (SDOs). By transmitting an SDO message, the

object dictionary of a certain device can be modified, e.g. with a configuration tool.

IMPORTANT . PDO communication is not permitted in Pre-Operational state. Switch

to Operational state to enable PDO transmission.

Nemesys Syringe Pump M / S - Firmware Specification 31

Figure 9: Network management (NMT)

In addition to communication via SDO messages, emergency, synchronization, time stamp and of course

NMT control messages can also be transmitted or received in the Pre-operational state. By transmitting

a "Start-Remote-Node", a node switches to the "Operational" state.

In “Operational” state, PDO transfer is permitted. Furthermore, “Operational” can be used to achieve

certain application behavior. The behavior's definition is part of the device profile’s scope. In

“Operational”, all communication objects are active. Object Dictionary access via SDO is possible.

However, implementation aspects or the application state machine may require to switching off or to

read only certain application objects while being operational (e.g. an object may contain the application

program, which cannot be changed during execution).

By switching a device into “Stopped” state it will be forced to stop PDO and SDO communication.

Except for node guarding or heartbeat messages, a node cannot transmit or receive any other messages

in this state.

32 Nemesys Syringe Pump M / S - Firmware Specification

Figure 10: NMT slave states

4.7 CANopen Error Handling – EMCY

4.7.1 Principle

Emergency objects are triggered by the occurrence of a CANopen device internal error situation and are

transmitted from an emergency producer on the CANopen device. They are assigned the highest

possible priority to ensure that they get access to the bus without latency. Emergency objects are

suitable for interrupt type error alerts. An emergency object is transmitted only once per 'error event'.

No further emergency objects will be transmitted as long as no new errors occur on a CANopen device.

Zero or more emergency consumers may receive the emergency object.

Simultaneously with transmission of the emergency message, the device writes the error code to [1003],

where the error history is stored. The error register is content of the OD entry [1001] with bit-wise

coding of the error cause

4.7.2 Emergency Message Frame

The device transmits emergency message frames over the CANopen network using COB-ID EMCY

(H1014). An emergency message consists of the error code with pre-defined error numbers and the

actual state of the Error Register (H1001).

Byte 0 1 2 3 4 5 6 7

Description Error Code Error Manufacturer specific error code

Nemesys Syringe Pump M / S - Firmware Specification 33

Figure 11: Emergency service (EMCY)

Register

Table 2: Emergency Message Frame

IMPORTANT . Emergency messages are only available for CAN bus communication

and not for serial RS232 communication.

5 CANopen Serial Interface (CSI)

5.1 Overview
This section describes the CETONI CANopen based Serial Interface (CSI). This is a serial protocol that

enables access to CANopen device object dictionaries via a RS232 serial interface. The CANopen based

Serial Interface (CSI) supports an Industrial RS232 Protocol with CRC checksum for reliable RS232

connection of CETONI devices to control systems in industrial or laboratory environments. For a high

degree of reliability in an electrically noisy environment, it features a checksum.

IMPORTANT . The protocol is a binary protocol with CRC checksum and handshaking.

So it is not possible to simply access device parameters via serial terminal program.

5.2 Physical Layer

5.2.1 Electrical Standard

The CSI communication protocol uses the RS232 standard for transmitting data over a three wires cable,

for the signals TxD, RxD and GND.

The RS232 standard can be used only for a point-to-point communication between a master and a

single device slave. The standard uses negative, bipolar logic in which a negative voltage signal

34 Nemesys Syringe Pump M / S - Firmware Specification

represents a logic ‘1’, and positive voltage represents a logic ‘0’. Voltages of –3V to –25V with respect to

signal ground (GND) are considered logic ‘1’, whereas voltages of +3V to 25V are considered logic ‘0’.

5.2.2 Medium

For the physical connection a 3 wire cable is required. It is recommended to install a shielded and

twisted pair cable in order to have a good performance even in an electrically noisy environment.

Depending on the bit rate used the cable length can range from 3 meters up to 15 meters. However we

do not recommend RS232 cables longer than 5 meters.

Nemesys Syringe Pump M / S - Firmware Specification 35

6 Industrial RS232 Protocol with
CRC checksum

6.1 Introduction
The serial EIA RS232 communication protocol is used to transmit and receive data over the CETONI

device's RS232 serial port. Its principal task is to transmit data from a master (PC or any other central

processing unit) to a single slave. The protocol is defined or point-to-point communication based on the

EIA-RS232 standard.

The protocol can be used to implement the command set defined for CETONI devices. For a high degree

of reliability in an electrically noisy environment, it features a checksum.

6.2 Protocol and Flow Control
The CETONI CANopen devices always communicates as a slave. A frame is only sent as an answer to a

request. All commands send an answer. The master must always initiate communication by sending a

packet structure.

Below described are the data flow while transmitting and receiving frame.

Nemesys Syringe Pump M / S - Firmware Specification 37

38 Nemesys Syringe Pump M / S - Firmware Specification

Figure 12: RS232 communication flow

Figure 13: Sending a data frame to CETONI device

Figure 14: Receiving a response data frame from CETONI device

6.3 Frame Structure

The data bytes are sequentially transmitted in frames. A frame composes of…

• synchronization (and byte stuffing),

• header,

• variably long data field, and

• 16-bit long cyclic redundancy check (CRC) for verification of data integrity.

• SYNC - The first two bytes are used for frame synchronization.

◦ DLE - Starting frame character “DLE” (Data Link Escape) = 0x90

◦ STX - Starting frame character “STX” (Start of Text) = 0x02

• HEADER - The header consists of 2 bytes. The first field determines the type of data frame to be

sent or received. The next field contains the length of the data fields.

◦ OpCode - Operation command to be sent to the slave. For details on the command set

◦ Len - Represents the number of words (16-bit value) in the data fields [0…143].

Nemesys Syringe Pump M / S - Firmware Specification 39

Figure 15: Frame structure

• DATA - The data fields contain the parameters of the message. The low byte of the word is

transmitted first.

◦ Data[i] The parameter word of the command. The low byte is transmitted first.

◦ CRC 16-bit long cyclic redundancy check (CRC) for verification of data integrity.

IMPORTANT . As a reaction to a bad OpCode or CRC value, the slave sends a frame

containing the corresponding error code.

6.4 CRC – Cyclic Redundancy Check

6.4.1 CRC Calculation

CRC is used for verification of data integrity.

IMPORTANT

• The 16-bit CRC checksum uses the algorithm CRC-CCITT.

• For calculation, the 16-bit generator polynomial “x16+x12+x5+x0” is used.

• The CRC is calculated before data stuffing and synchronization.

• Add a CRC value of “0” (zero) for CRC calculation.

• The data frame bytes must be calculated as a word.

6.4.2 CRC Algorithm

ArrayLength: Len + 2 WORD DataArray[ArrayLength]

Generator Polynom G(x): 10001000000100001 (= x16+x12+x5+x0)

DataArray[0]: HighByte(Len) + LowByte(OpCode)

DataArray[1]: Data[0]

DataArray[2]: Data[1]

…

DataArray[ArrayLength-1]: 0x0000 (ZeroWord)

The following C-Code shows how to calculate the CRC checksum:

40 Nemesys Syringe Pump M / S - Firmware Specification

6.5 Byte Stuffing
The sequence “DLE” and “STX” are reserved for frame start synchronization. If the character “DLE”

appears at a position between “OpCode” and “CRC” and is not a starting character, the byte must be

doubled (byte stuffing). Otherwise, the protocol begins to synchronize for a new frame. The character

“STX” needs not to be doubled.

Examples:

Sending Data 0x21, 0x90, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x45

Sending Data 0x21, 0x90, 0x02, 0x45

Nemesys Syringe Pump M / S - Firmware Specification 41

uint16_t CalcFieldCRC(uint16_t *pDataArray, uint16_t ArrayLength)

{

 uint16_t shifter, c;

 uint16_t carry;

 uint16_t CRC = 0;

 //Calculate pDataArray Word by Word

 while(ArrayLength−−)

 {

 shifter = 0x8000; //Initialize BitX to Bit15

 c = *pDataArray++; //Copy next DataWord to c

 do

 {

 carry = CRC & 0x8000; //Check if Bit15 of CRC is set

 CRC <<= 1; //CRC = CRC * 2

 if (c & shifter) CRC++; //CRC = CRC + 1, if BitX is set in c

 if (carry) CRC ^= 0x1021; //CRC = CRC XOR G(x), if carry is true

 shifter >>= 1; //Set BitX to next lower Bit, shifter = shifter/2

 } while (shifter);

 }

 return CRC

}

Stuffed Data 0x21, 0x90, 0x90, 0x02, 0x45

Sending Data 0x21, 0x90, 0x90, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x90, 0x90, 0x45

IMPORTANT . Byte stuffing is used for all bytes (CRC included) in the frame except the

starting characters.

6.6 Transmission Byte Order
To send and receive a word (16-bit) via the serial port, the low byte will be transmitted first.

Multiple byte data (word = 2 bytes, long word = 4 bytes) are transmitted starting with the less

significant byte (LSB) first.

A word will be transmitted in this order: byte0 (LSB), byte1 (MSB).

A long word will be transmitted in this order: byte0 (LSB), byte1, byte2, byte3 (MSB).

6.7 Data Format
Data is transmitted in an asynchronous way, thus each data byte is transmitted individually with its own

start and stop bit. The format is

1 Start bit, 8 Data bits, No parity, 1 Stop bit (8N1)

Most serial communication chips (SCI, UART) can generate such data format.

6.8 Timeout Handling
The timeout is handled over a complete frame. Hence, the timeout is evaluated over the sent data

frame, the command processing procedure and the response data frame. For each frame (frames, data

processing), the timer is reset and timeout handling will recommence.

42 Nemesys Syringe Pump M / S - Firmware Specification

Index Subindex Object Default

0x2005 0x00 RS232 Frame Timeout 500 [ms]

HINT . To cover special requirements, the timeout may be changed by writing to the

Object Dictionary!

Nemesys Syringe Pump M / S - Firmware Specification 43

6.9 Slave (device) state machine

44 Nemesys Syringe Pump M / S - Firmware Specification

6.10 Command Reference

6.10.1 Read Functions

6.10.1.1 READ OBJECT DICTIONARY ENTRY (4 DATA BYTES AND LESS)

Read an object value from the Object Dictionary of the device at the given Index and SubIndex.

REQUEST FRAME

OpCode BYTE 0x60

Len-1 BYTE 2 (number of words)

Parameters BYTE Node-ID

WORD Index of Object

BYTE Subindex of Object

The device responds with a data frame with 4 bytes of data.

RESPONSE FRAME

OpCode BYTE 0x00

Len-1 BYTE 4 (number of words)

Parameters DWORD Communication Error Code (see firmware spec.)

BYTE [4] Data Bytes read

Nemesys Syringe Pump M / S - Firmware Specification 45

6.10.2 Write Functions

6.10.2.1 WRITE OBJECT DICTIONARY ENTRY (4 DATA BYTES AND LESS)

Write an object value to the Object Dictionary at the given Index and SubIndex.

REQUEST FRAME

OpCode BYTE 0x68

Len-1 BYTE 4 (number of words)Node ID

Parameters BYTE Node ID

WORD Index of Object

BYTE SubIndex of Object

BYTE Data[4] Data Bytes to write

The device responds with a response frame without any data.

RESPONSE FRAME

OpCode BYTE 0x00

Len-1 BYTE 2 (number of words)

Parameters DWORD Communication Error Code (see firmware spec)

46 Nemesys Syringe Pump M / S - Firmware Specification

6.11 Example Frames

6.11.1 Reading Object 0x1000 – Device Type
Index Sub Index Name Type Access Value

0x1000 0x00 Device Type UInt32 RO 0x000200192

The following example shows, how to read the device type object. The device type object can be read via

object dictionary index 0x1000 and sub-index 0. In the following example the object is read from a

Nemesys pump and the value returned by the device is 0x00020192.

6.11.1.1 FRAME SETUP

REQUEST FRAME

OpCode BYTE Read object 0x60

Len-1 BYTE Number of words 0x02

Parameters BYTE Node-ID 0x02

WORD Index of Object 0x1000

BYTE Subindex of Object 0x00

6.11.1.2 CRC CALCULATION

Before you calculate the CRC checksum for the read request frame, you should have the following array

of data words:

DataArray

DataArray[0] 0x0260

DataArray[1] 0x0002

DataArray[2] 0x0010

DataArray[3] 0x0000 (use CRC value of 0 as placeholder)

Now you can calculate the checksum for the 4 words and insert the result 0xEECD into the DataArray[3]

field in little endian order so that you get the following DataArray:

Nemesys Syringe Pump M / S - Firmware Specification 47

DataArray

DataArray[0] 0x0260

DataArray[1] 0x0002

DataArray[2] 0x0010

DataArray[3] 0xEECD

IMPORTANT

• Make sure that the CRC is calculated correctly. If the CRC is not correct, the

command will neither be accepted nor processed.

• CRC calculation includes all bytes of the data frame except synchronization

bytes and byte stuffing.

• The data frame bytes must be calculated as a word.

• For calculation, use a CRC value of “0” (zero).

6.11.1.3 CREATE BYTE STREAM AND SEND DATA

• Pack the DataArray to a byte stream (low byte first): 60 02 02 00 10 00 CD EE

• Add sync bytes: 90 02 60 02 02 00 10 00 CD EE

• Add byte stuffing: 90 02 60 02 02 00 10 00 CD EE (because the frame does not contain 0x90

data bytes, nothing changes)

• Send stuffed data (low byte first)

6.11.1.4 WAIT FOR THE RECEIVE FRAME

The device will answer to the command “ReadObject” with an answer frame and the returned

parameters in the data block as follows (Reception order low byte first). The first two bytes are the sync

bytes:

90 02 00 04 00 00 00 00 92 01 02 00 9A ED

IMPORTANT . Do not send any data before the receive frame or a timeout is present.

EPOS4 cannot process data simultaneously.

48 Nemesys Syringe Pump M / S - Firmware Specification

Nemesys Syringe Pump M / S - Firmware Specification 49

6.11.1.5 REMOVE BYTE STUFFING IN SYNCHRONIZATION ELEMENTS

Byte stream without stuffing and synchronization elements:

00 04 00 00 00 00 92 01 02 00 9A ED

6.11.1.6 CRC CHECK

Now you should have the following array of data words for CRC calculation.

DataArray

DataArray[0] 0x0400

DataArray[1] 0x0000

DataArray[2] 0x0000

DataArray[3] 0x0192

DataArray[4] 0x0002

DataArray[5] 0xED9A

Now you can calculate the checksum for the 6 words. The result of the CRC calculation should be 0.

Only if the result is 0, you have received a valid data frame.

6.11.1.7 CHECK THE RECEIVED DATA

Now you have the following valid response frame:

RESPONSE FRAME

OpCode BYTE OpCode 0x00

Len-1 BYTE Number of words 0x04

Parameters DWORD Communication Error Code 0x00000000 (no error)

BYTE [4] Data Bytes read 0x00020192

Now check the received communication error and readout the received data.

IMPORTANT

• If the error code is unequal to “0” (zero), the command was not processed!

• Check Communication Error Code Definition for error details.

• Fix the error before attempting to resend the data frame.

50 Nemesys Syringe Pump M / S - Firmware Specification

6.11.2 Writing Object 0x1017 – Producer Heartbeat Time
Index Sub Index Name Type Access Value

0x1017 0x00 Producer Heartbeat Time UInt32 RW 400

The following example shows, how to write a producer heartbeat time of 400 milliseconds into the

object 0x1017 sub-index 0. The hex value for 400 milliseconds is 0x190.

6.11.2.1 FRAME SETUP

REQUEST FRAME

OpCode BYTE Write object 0x68

Len-1 BYTE Number of words 0x04

Parameters BYTE Node-ID 0x02

WORD Index of Object 0x1017

BYTE Subindex of Object 0x00

BYTE Data[4] Data Bytes to write 0x00000190

6.11.2.2 CRC CALCULATION

Before you calculate the CRC checksum for the write request frame, you should have the following array

of data words:

DataArray

DataArray[0] 0x0468

DataArray[1] 0x1702

DataArray[2] 0x0010

DataArray[3] 0x0190

DataArray[4] 0x0000

DataArray[5] 0x0000 (use CRC value of 0 as placeholder)

Now you can calculate the checksum for the 4 words and insert the result 0xEC77 into the DataArray[5]

field in little endian order so that you get the following DataArray:

Nemesys Syringe Pump M / S - Firmware Specification 51

DataArray

DataArray[0] 0x0468

DataArray[1] 0x1702

DataArray[2] 0x0010

DataArray[3] 0x0190

DataArray[4] 0x0000

DataArray[5] 0xEC77

IMPORTANT

• Make sure that the CRC is calculated correctly. If the CRC is not correct, the

command will neither be accepted nor processed.

• CRC calculation includes all bytes of the data frame except synchronization

bytes and byte stuffing.

• The data frame bytes must be calculated as a word.

• For calculation, use a CRC value of “0” (zero).

6.11.2.3 CREATE BYTE STREAM AND SEND DATA

• Pack the DataArray to a byte stream (low byte first): 68 04 02 17 10 00 90 01 00 00 77 EC

• Add sync bytes: 90 02 68 04 02 17 10 00 90 01 00 00 77 EC

• Add byte stuffing: 90 02 68 04 02 17 10 00 90 90 01 00 00 77 EC

• Send stuffed data (low byte first)

6.11.2.4 WAIT FOR THE RECEIVE FRAME

The device will answer to the command “WriteObject” with an answer frame and the returned

parameters in the data block as follows (Reception order low byte first). The first two bytes are the sync

bytes:

90 02 00 02 00 00 00 00 40 8B

IMPORTANT . Do not send any data before the receive frame or a timeout is present.

EPOS4 cannot process data simultaneously.

52 Nemesys Syringe Pump M / S - Firmware Specification

6.11.2.5 REMOVE BYTE STUFFING IN SYNCHRONIZATION ELEMENTS

Byte stream without stuffing and synchronization elements:

00 02 00 00 00 00 40 8B

6.11.2.6 CRC CHECK

Now you should have the following array of data words for CRC calculation.

DataArray

DataArray[0] 0x0200

DataArray[1] 0x0000

DataArray[2] 0x0000

DataArray[3] 0x8B40

Now you can calculate the checksum for the 4 words. The result of the CRC calculation should be 0.

Only if the result is 0, you have received a valid data frame.

6.11.2.7 CHECK THE RECEIVED DATA

Now you have the following valid response frame:

RESPONSE FRAME

OpCode BYTE OpCode 0x00

Len-1 BYTE Number of words 0x02

Parameters DWORD Communication Error Code 0x00000000 (no error)

Now check the received communication error.

IMPORTANT

• If the error code is unequal to “0” (zero), the command was not processed!

• Check Communication Error Code Definition for error details.

• Fix the error before attempting to resend the data frame.

Nemesys Syringe Pump M / S - Firmware Specification 53

6.12 Communication Error Code Definition
ABORT CODE NAME CAUSE

0x0000 0000 No abort Communication successful

0x0503 0000 Toggle error Toggle bit not alternated

0x0504 0000 SDO timeout SDO protocol timed out

0x0504 0001 Command unknown Command specifier unknown

0x0504 0004 CRC error CRC check failed

0x0601 0000 Access error Unsupported access to an object

0x0601 0001 Write only error Read command to a write only object

0x0601 0002 Read only error Write command to a read only object

0x0601 0003 Subindex cannot be written Subindex cannot be written, subindex 0 must be “0” (zero) for

write access

0x0601 0004 SDO complete access not supported The object can not be accessed via complete access

0x0602 0000 Object does not exist error Last read or write command had wrong object index or subindex

0x0604 0041 PDO mapping error Object is not mappable to the PDO

0x0604 0042 PDO length error Number and length of objects to be mapped would exceed PDO

length

0x0604 0043 General parameter error General parameter incompatibility

0x0604 0047 General internal incompatibility error General internal incompatibility in device

0x0606 0000 Hardware error Access failed due to hardware error

0x0607 0010 Service parameter error Data type does not match, length or service parameter do not

match

0x0607 0013 Service parameter too short error Data type does not match, length of service parameter too low

0x0609 0011 Subindex error Last read or write command had wrong object subindex

0x0609 0030 Value range error Value range of parameter exceeded

0x0800 0000 General error General error

0x0800 0020 Transfer or store error Data cannot be transferred or stored

0x0800 0022 Wrong device state error Data cannot be transferred or stored to application because of

present device state

0x0F00 FFBE Password error Password is incorrect

0x0F00 FFBF Illegal command error Command code is illegal (does not exist)

0x0F00 FFC0 Wrong NMT state error Device is in wrong NMT state

54 Nemesys Syringe Pump M / S - Firmware Specification

7 Pump Control

7.1 Object Dictionary
Internally the pump uses a EPOS4 CANopen DS402 servo drive to move the pusher and the syringe

piston. A detailed description of the EPOS4 CANopen drives is provided with the document EPOS4-

Firmware-Specification.pdf. You can control the drive by reading and writing the object dictionary

entries of the device. The controller has an extensive object directory (see section 6 Object Dictionary in

the EPOS4 firmware specification), but only a few entries are relevant for the control of the Nemesys

pumps. The following table list all object dictionary entries that are required for pump control.

Index Name

0x1001 Error Register

0x1003 Error History (Predefined Error Field)

0x2005 RS232 Frame Timeout

0x210C Custom persistent memory

0x3000 Axis configuration

0x3003 Gear configuration

0x3141 Digital input properties

0x30D3 Velocity Actual Values

0x3160 Analog input properties

0x3182 Analog output general purpose

0x6040 Controlword

0x6041 Statusword

0x6060 Modes of operation

0x6061 Modes of operation display

0x6064 Position actual value

0x606B Velocity demand

0x607A Target position

0x607D Software position limit

0x607F Max profile velocity

0x6081 Profile velocity

Nemesys Syringe Pump M / S - Firmware Specification 55

EPOS4-Firmware-Specification.pdf
EPOS4-Firmware-Specification.pdf

0x60A9 Si unit velocity

0x60FD Digital inputs

0x60FE Digital outputs

7.2 Operating Modes
The EPOS4 CANopen drive supports a number of operating modes (see section 3 Operating Modes in

the EPOS4-Firmware-Specification.pdf). For pump control, only one of these operation modes is

required.

• MODE 1 – PROFILE POSITION: this mode is required for normal pumps tasks like

aspirating or dispensing

To activate a mode, you simply need to write the mode index 1 for Profile Position Mode into the object

dictionary entry 0x6060 Modes Of Operation. To read out the active operation mode, you simple need to

read the current value of 0x6061 Modes Of Operation Display.

Index Subindex Object Description Type

0x6060 0 Modes of Operation Write into this object to switch operating mode INTEGER8

0x6061 0 Modes of Operation Display Read current operating mode from this object INTEGER8

7.3 Translation of volume / flow units

7.3.1 Introduction

Whenever you call a function that requires a volume (position) value or a flow (speed) value, the value is

given in device internal units like increments for position values and mrpm (millirevolutions per minute)

for velocity values. These technical units are not well suited for dosing tasks (for volumes and flow rates)

and need to be translated by the application to implement pump control.

This translation depends on several parameters like mechanical configuration of the single dosing units

(gear) and it also depends on the syringes used for dosing. The following two sections will show you,

how you can convert the internal device units for device control into units for volume and flow values.

56 Nemesys Syringe Pump M / S - Firmware Specification

EPOS4-Firmware-Specification.pdf

7.3.2 Reading out device parameters

7.3.2.1 OVERVIEW

For the calculation of flow rates and volumes the following device parameters are required:

Index Subindex Object Description Type

0x60A9 0 SI unit velocity Contains the velocity SI unit UNSIGED32

0x3003 1 Gear reduction numerator Read gear numerator UNSIGED32

0x3003 2 Gear reduction denominator Read gear denominator UNSIGED32

0x3000 5 Main sensor resolution Read the encoder resolution from this object UNSIGED32

7.3.2.2 SI UNIT VELOCITY

The Object 0x60A9 defines the velocity unit.

Bit 31..24 Bit 23..16 Bit 15..8 Bit 7..0

Prefix Numerator Denominator Reserved (0)

All velocity values are given and returned in internal velocity units. The following values are possible:

Value Velocity unit Symbol

0x00B44700 revolutions/minute rev/min (rpm)

0xFFB44700 0.1 revolutions/minute deci rev/min (drpm)

0xFEB44700 0.01 revolutions/minute centi rev/min (crpm)

0xFDB44700 0.001 revolutions/minute milli rev/min (mrpm) Default

0xFCB44700 0.0001 revolutions/minute 10−4 rev/min (10−4 rpm)

0xFBB44700 0.00001 revolutions/minute 10−5 rev/min (10−5 rpm)

0xFAB44700 0.000001 revolutions/minute micro rev/min (µrpm)

The default unit is mrpm – millirevolutions per minute.

This is how the prefix is given:

Prefix Factor Symbol Notion I

- 10 ^ 0 - 0x00

Deci 10 ^ -1 d 0xFF

Centi 10 ^ -2 c 0xFE

Milli 10 ^ -3 m 0xFD

Nemesys Syringe Pump M / S - Firmware Specification 57

7.3.2.3 ENCODER RESOLUTION

The encoder resolution defines the number of increments per motor revolution. All internal position

values are given in increments. To read out the encoder pulse number you need to read the object

dictionary entry 0x3000, Subindex 5 – Main sensor resolution.

7.3.2.4 GEAR FACTOR

The gear factor defines the factor for the conversion of motor revolutions into the moved pusher

distance in mm. The gear factor consists of a gear nominator and a gear denominator. You need to read

the following two object dictionary entries, to get the gear factor.

Index Subindex Object Description Type

0x3003 1 Gear reduction numerator Read gear numerator UNSIGED32

0x3003 2 Gear reduction denominator Read gear denominator UNSIGED32

From these to values, you can calculate the gear factor:

Gear Factor (rev/mm) = Gear numerator / Gear denominator

7.3.3 Position value conversion

7.3.3.1 CALCULATING THE POSITION CONVERSION FACTOR

With the values read from the device, you can calculate a position conversion factor for conversion

between internal device units (increments) and millimetres. First we can convert the increment value

into motor revolutions with the help of the encoder resolution value:

Motor revolutions =Increments / Encoder Resolution

Then you have to translate these motor rotations into the distance of the pusher with the help of the

gear factor:

Distance in mm = Motor revolutions / Gear factor

So the final calculation is:

mm= Increments
Encoder Resolution(inc /rev)×Gear factor (rev /mm)

58 Nemesys Syringe Pump M / S - Firmware Specification

From this formula we can extract the position conversion factor:

Position conversion factor (inc/mm) = Encoder Resolution (inc/rev) x Gear Factor (rev/mm)

7.3.3.2 CONVERSION OF POSITION VALUES

To convert from increments into a distance in mm, you just need to de divide the increments value by

the position conversion factor:

mm = Increments / Position conversion factor

To convert a distance in mm into an increments value, you just need to multiply the distance with the

conversion factor:

Increments = mm * Position conversion factor

7.3.3.3 EXAMPLE POSITION CONVERSION

The following example shows how to convert a distance in millimetres into internal position units:.

Encoder resolution: 8192 inc/rev

Gear factor: 21,78 rev/mm

Position conversion factor 8192 inc/rev * 21,78 rev/mm = 178.421,76 inc/mm

Distance in mm: 10 mm

Position value in increments: 10 mm * 178.421,76 inc/mm = 1.784.217,6 inc ≈ 1.784.218 inc

7.3.4 Velocity value conversion

7.3.4.1 CALCULATING THE VELOCITY CONVERSION FACTOR

With the values read from the device, you can calculate a velocity conversion factor for conversion

between internal device units and millimetres/second (mm/s). First we convert the internal velocity unit

into into revolutions/minute.

rev /min=device velocity×10velocity unit prefix

If the velocity unit prefix in object 0x60A0 is 0xFD, this would mean rev/min = device velocity x 10 ^ -3.

Nemesys Syringe Pump M / S - Firmware Specification 59

Then we can convert the revolutions/minute into revolutions per second by dividing by 60.

rev/s = rev/min / 60 s/min

Finally we can calculate the velocity in millimetres/second with the help of the gear factor:

mm/ s= rev / s
Gear factor (rev /mm)

So the final calculations is:

mm/ s=device velocity×10
velocity notationindex

60 s /min×Gear factor (rev /mm)

From this formula we can extract the velocity conversion factor:

Velocity conversion factor=
60 s /min×Gear factor (rev /mm)

10velocitynotation index

7.3.4.2 CONVERSION OF VELOCITY VALUES

To convert from device velocity into a velocity in mm/s, you just need to divide device velocity values by

the velocity conversion factor:

mm/s = Device velocity / Velocity conversion factor

To convert a velocity in mm/s into a device velocity value, you just need to multiply the velocity with the

conversion factor:

Device velocity = mm/s x Velocity conversion factor

7.3.4.3 EXAMPLE VELOCITY CONVERSIONS

Velocity unit : 0xFDB44700 = millirevolutions per minute, Prefix is 0xFD = -3

Gear factor: 21,78 rev/mm

Velocity conversion factor: 60s/min x 21,78 rev/mm / 10-3 = 1.306.800

Velocity value: 2 mm/s

Device velocity: 2 mm/s * 1.306.800 = 2.613.600 mrev/min

60 Nemesys Syringe Pump M / S - Firmware Specification

7.3.5 Volume value conversions

7.3.5.1 CALCULATION

Section Position value conversion shows, how to convert internal device position into millimetres. This

section shows, how to convert a position value in millimetres into a volume in millilitres. To convert a

pusher movement in millimetres into a volume value in millilitres, you need to know the inner diameter

of the syringe mounted on the device. With the help of the inner syringe diameter and a length in

millimetres, you can calculate the cylinder volume in mm3.

Volume(mm3)=π
4
d (mm)2⋅length(mm)

One millilitre is equal to 1000 mm3. So you can calculate millilitres directly with the following formula:

Volume(ml)=π
4
d (mm)2⋅length (mm)/1000

From a given value in millilitres you can calculate the pusher distance with the following formula:

mm=
Volume (ml)⋅1000⋅4

πd2

With then help of the Position conversion factor you can now convert millimetres into internal device

position units (increments).

7.3.5.2 EXAMPLE VOLUME CONVERSION

The following example shows, how to convert a volume value in millilitres into internal device position

units:

Volume: 10 ml

Inner syringe diameter: 14,5673 mm

Distance in mm: 10 ml * 1000 mm3/ml * 4 / π / (14,5673 mm)2 = 60 mm

Position conversion factor: 178.421,76 inc/mm

Position value in increments: 60 mm * 178.421,76 inc/mm = 10.705.305,6 inc ≈ 10.705.306 inc

Nemesys Syringe Pump M / S - Firmware Specification 61

7.3.6 Flow value conversions

7.3.6.1 CALCULATION

Section Velocity value conversion shows, how to convert internal device velocity into

millimetres/second (mm/s) and vice versa. This section shows, how to convert a velocity value in

millimetres/second (mm/s) into a flow value in millilitres/second (ml/s). To convert a pusher movement

in millimetres/second into a flow value in millilitres/second, you need to know the inner diameter of the

syringe mounted on the device. With the help of the inner syringe diameter and a length in millimetres,

you can calculate the cylinder volume in mm3.

Volume(mm3)=π
4
d (mm)2⋅length(mm)

One millilitre is equal to 1000 mm3. So you can calculate millilitres directly with the following formula:

Volume(ml)=π
4
d (mm)2⋅length (mm)/1000

Now we can easily create the formula for conversion of velocity values in mm/s into flow values in ml/s

Flow(ml/s)=Volume (ml)
s

=πd (mm)2

4×1000
×Velocity (mm /s)

and the formula for conversion of flow values in ml/s into velocity values in mm/s

Velocity(mm /s)=
Flow(ml/ s)⋅1000⋅4

π d(mm)2

With the help of the Velocity conversion factor you can now convert mm/s into internal device velocity.

7.3.6.2 EXAMPLE FLOW CONVERSION

The following example shows, how to convert a flow value in millilitres/second (ml/s) into internal

device velocity units:

Flow: 1,054814 ml/s

Inner syringe diameter: 14,5673 mm

Velocity in mm/s: 1,054814 ml/s * 1000 mm3/ml * 4 / π / (14,5673 mm)2 = 6,328 mm/s

Velocity conversion factor: 1.306.800

Device velocity: 6,328 mm/s * 1.306.800 = 8.269.430,4 mrev/min

62 Nemesys Syringe Pump M / S - Firmware Specification

7.4 Reading out device configuration

7.4.1 Device Overview
The following picture shows the device hardware:

The axis length is the distance between the Positive Limit (Max. Position Limit) and the Negative Limit

(Min. Position Limit). During normal dosing operations, the pusher should not reach these limits.

Therefore the real travel range is limited by two safety margins.

7.4.2 Calculating the travel range

The object 0x607D Software Position Limit contains information about the travel range and limits the

position range. Using position values outside of this range will cause an error and triggers sending of an

emergency message.

Index Subindex Object Description Type

0x607D 1 Min. position limit Negative limit INTEGER32

0x607D 2 Max. position limit Positive limit INTEGER32

Nemesys Syringe Pump M / S - Firmware Specification 63

Positive
Limit

Negative
Limit

Max. Position 0
Syringe Empty

Min. Position
(z.B. -10.705.306)

Safety
Margin

Travel range

Positive direction = dispensing
(target position > 0)

Negative direction = aspirating
(target position < 0)

Axis length

Max. Position Limit
(0x607D, 0x02)

Min. Position Limit
(0x607D, 0x01)

Safety
Margin

To calculate the travel range, you first need to read the value of the 0x0607D Subindex 2 Max. position

limit. This value is the safety margin from the zero position.

Safety Margin = 0x0607D Subindex 2 - Max. position limit

The maximum position value and the syringe empty position is the position 0:

Max. Position = 0

To calculate the Min. Position value, you need to read the object 0x0607D Subindex 1 Min. position limit.

The Min. position limit is a negative value and therefore you need to add the safety margin:

Min. Position = 0x0607D Subindex 1 Min. position limit + Safety Margin

You now have the minimum and maximum position values and you can calculate the travel range from

these values:

Travel range (inc) = Max. Position – Min. Position

The typical ravel range for the Nemesys S and Nemesys M syringe pumps is from 0 to -10.705.306

increments.

If you command a dosing operation, then you should never use position values outside of the travel

range (e.g. 0 to -10.705.306). That means, the Max. Position and Min. Position values limit your travel

range. The position counter value increases if the drive moves in positive direction towards the positive

limit and decreases if it moves in negative direction towards the negative limit. If you would like to

empty the syringe or aspirate, you need to move towards the positive limit. If you would like to aspirate

or refill, then you need to move toward the negative limit.

Here is the C code from the Nemesys RS232 library for reading out and calculating the minimum and

maximum position values:

64 Nemesys Syringe Pump M / S - Firmware Specification

7.4.3 Calculating the maximum flow rate

The object 0x607F Subindex 0 provides the maximum possible velocity in device units.

Index Subindex Object Description Type

0x607F 0 Max profile velocity Maximum allowed velocity value UNSIGNED32

You can convert this value into the maximum possible flow rate using the calculations from section

Translation of volume / flow units.

7.4.4 Reading out the device type

To get additional information about the type of device, you can read object 0x210C Subindex 3 Custom

persistent memory 3.

Index Subindex Object Description Type

0x210C 3 Custom Persistent Memory 3 Pump configuratopm UNSIGNED32

The object contains a bitfield with additional information about various pump configuration parameters:

32 17 16 10 9 4 3 0

reserved Product Type reserved Spindle Slope

MSB LSB

Field Value Description

Product Type 6 Nemesys M

7 Nemesys S

Here is the Nemesys RS232 library C code for reading out the product type:

Nemesys Syringe Pump M / S - Firmware Specification 65

CsiDevReadObject(&Nemesys->Device, NemV4_OD_H607D_SW_POS_LIMITS,

 2, (uint32_t*)&Nemesys->MaxPos);

CsiDevReadObject(&Nemesys->Device, NemV4_OD_H607D_SW_POS_LIMITS,

 1, (uint32_t*)&Nemesys->MinPos);

int SafetyMargin = Nemesys->MaxPos;

Nemesys->MaxPos -= SafetyMargin;

Nemesys->MinPos += SafetyMargin;

7.5 Initializing
Here is your checklist what you should do, to properly initialize your software parameters and to prepare

your software and the pump for the first dosage command:

(1) Read the encoder resolution, the gear factor and the velocity SI unit for calculation of the velocity

and position conversion factors to convert between device units (inc, mrpm) and SI units (mm,

mm/min).

(2) Initialize your local syringe parameters in your software to properly convert volumes and flow

rates (ml, ml/min) into positions and velocities (mm, mm/min).

(3) Read the software position limits from the device to properly calculate your travel range and your

position limits for volume and flow commands

(4) Read the maximum profile velocity from the device for proper calculation of the maximum flow

rate.

(5) Read the product type from the device to initialize your force sensor and force limit conversion

factors to convert between mV and force values.

(6) Ensure, that the operation mode is profile position mode

(7) Ensure, that force monitoring is enabled

(8) Check safety stop input – it should be off.

(9) Check if the device is in fault state and clear fault if this is required

(10) Set the pump drive into enabled state

66 Nemesys Syringe Pump M / S - Firmware Specification

CsiDevReadObject(&Nemesys->Device, NemV4_OD_H210C_CUSTOM_PERSISTENT_MEM, 3, &AxisConf);

Nemesys->ProductType = (AxisConf >> 10) & 0x7F;

7.6 Pump Drive Control

7.6.1 Drive State Machine

The pump drive uses the state machine below. States may be changes by using the Controlword (Object

0x6040). The actual state can be read using the Statusword (Object 0x6041). A new state transition must

not be initiated before the previous one is completed and the Statusword is changed accordingly.

Nemesys Syringe Pump M / S - Firmware Specification 67

7.6.2 Reading State of Drive

You need to read the Statusword to get the state of the drive:

Index Subindex Object Description Type

0x6041 0 Statusword Read current device state and status information from this object UNSIGNED16

Below are the Statusword bits for the profile position mode:

Bit Name Decription

15 Position referenced to home

position

Not required - ignore

14 reserved (0)

13 Following error • 0 – No following error

• 1 - The required force is higher than the maximum drive force (high

pressure) or the drive is blocked somehow

12 Setpoint acknowledge • 0 - Positioning to the previous setpoint is ongoing and a new setpoint

may be accepted

• The previous setpoint has been assumed and no additional setpoint

may be accepted

11 Internal limit active

10 Target reached A value of 1 indicates, that target position is reached / drive is stopped

9 Remote Not required - ignore

8 reserved (0)

7 Warning

6 Switch on disabled Actual drive state (see Table below)

5 Quick stop

4 Voltage enabled (power stage on)

3 Fault

2 Operation enabled

1 Switched on

0 Ready to switch on

68 Nemesys Syringe Pump M / S - Firmware Specification

The Statusword bits 0- 6 (see table above) indicate the actual state of the drive as shown in the state

diagramm

State Statusword [binary] Description

Not ready to switch on xxxx xxxx x00x 0000 Drive function is disabled

Switch on disabled xxxx xxxx x10x 0000 Drive initialization is complete. Drive parameters may be changed.

Drive function is disabled.

Ready to switch on xxxx xxxx x01x 0001 Drive parameters may be changed. Drive function is disabled.

Switched on xxxx xxxx x01x 0011 Drive function is disabled. Current offset calibration done.

Operation enabled xxxx xxxx x01x 0111 No faults have been detected.

Drive function is enabled and power is applied to the motor.

Quick stop active xxxx xxxx x00x 0111 «Quick stop» function is being executed.

Drive function is enabled and power is applied to the motor.

Fault reaction active xxxx xxxx x00x 1111 A fault has occurred in the drive. Selected fault reaction is being

executed.

Fault xxxx xxxx x00x 1000 A fault has occurred in the drive. Drive parameters may have

changed. Drive function is disabled.

The following example code from the Nemesys RS232 C-Library shows the test macros to test the

received Statusword for a certain state:

Nemesys Syringe Pump M / S - Firmware Specification 69

70 Nemesys Syringe Pump M / S - Firmware Specification

// common bits in status word

#define SWBIT_SWON_RDY 0x0001 ///< ready to switch on

#define SWBIT_SWON 0x0002 ///< switched on

#define SWBIT_OP_EN 0x0004 ///< operation enabled

#define SWBIT_FAULT 0x0008 ///< fault

#define SWBIT_VOLT_EN 0x0010 ///< voltage enabled

#define SWBIT_QUICK_STOP 0x0020 ///< quick stop

#define SWBIT_SWON_DIS 0x0040 ///< switch on disabled

#define SWBIT_WARNING 0x0080 ///< warning

#define SWBIT_REMOTE 0x0200 ///< remote

#define SWBIT_TARG_REACHED 0x0400 ///< target reached

#define SWBIT_INT_LIM 0x0800 ///< internal limit active

/// Status words of object dictionary entry OD_H6041_STATUS_WORD

typedef enum eStatusWord

{

 SW_SWON_NOT_RDY = 0x00, ///< not ready to switch on

 SW_SWON_DIS = 0x40, ///< switch on disabled

 SW_SWON_RDY = 0x21, ///< ready to switch on

 SW_SWON = 0x23, ///< switched on

 SW_OP_EN = 0x27, ///< operation enabled

 SW_QUICK_STOP = 0x07, ///< quick stop active

 SW_FAULT_REAC = 0x0F, ///< fault reaction active

 SW_FAULT = 0x08, ///< fault

 SW_UNDEFINED = 0xFF ///< undefined state

} TStatusWord;

// statusword test macros

#define STATE_IS_FAULT(_wState_) (((_wState_) & 0x004F) == SW_FAULT)

#define STATE_IS_FAULT_REAC(_wState_) (((_wState_) & 0x004F) == SW_FAULT_REAC)

#define STATE_IS_QUICK_STOP(_wState_) (((_wState_) & 0x006F) == SW_QUICK_STOP)

#define STATE_IS_SWON_NOT_RDY(_wState_) (((_wState_) & 0x004F) == SW_SWON_NOT_RDY)

#define STATE_IS_SWON_DIS(_wState_) (((_wState_) & 0x004F) == SW_SWON_DIS)

#define STATE_IS_SWON_RDY(_wState_) (((_wState_) & 0x006F) == SW_SWON_RDY)

#define STATE_IS_SWON(_wState_) (((_wState_) & 0x006F) == SW_SWON)

#define STATE_IS_OP_EN(_wState_) (((_wState_) & 0x006F) == SW_OP_EN)

State transitions of the drive state machine are caused by internal events in the drive or by commands

from the host via Controlword. The transition numbers in the table below are the number shown in the

drive state diagram.

Transition Event Action

0 Reset Initialize drive

1 Drive has initialized successfully Activate communication

2 «Shutdown» command received

3 «Switched on» command received Initialize current sensor. Current offset calibration.

4 «Enable operation» command received Enable drive function (enable current controller and, if needed,

position or velocity controller)

5 «Disable operation» command received Stop movement according to «Disable operation option code».

Disable drive function.

6 «Shutdown» command received Disable power section

7 «Quick stop» or «Disable voltage»

command received

8 «Shutdown» command received Stop movement according to «Shutdown option code».

Disable drive function and power section.

9 «Disable voltage» command received Stop movement according to «Shutdown option code».

Disable drive function and power section.

10 «Quick stop» or «Disable voltage»

command received

11 «Quick stop» command received Stop movement according to «Quick stop option code»

12 «Disable voltage» command received Disable drive function and power section

13 A fault has occurred Start fault reaction

14 The fault reaction is completed Disable drive function and power section

15 «Fault reset» command received Reset fault condition if no fault is present

16 «Enable operation» command received

Nemesys Syringe Pump M / S - Firmware Specification 71

7.6.3 Device Control via Controlword

State transitions of the drive state machine are caused by internal events in the drive or by commands

from the host via Controlword:

Index Subindex Object Description Type

0x6040 0 Controlword Write to this object to control the internal device state machine UNSIGNED16

Below are the profile position mode specific Controlword bits:

Bit Name Desription

15 Endless movement Not required – set to 0

14…9 reserved

8 Halt 0 – Execute or continue positioning 1 – Stop drive

7 Fault reset A rising edge from 0 to 1 triggers a fault reset

6 Abs / rel 0 – Target position is an absolute value 1 - Target position is a relative value

5 Change set immediately • 0 - Finish actual positioning, then start next positioning. The actual positioning is

considered as completed as soon as the position demand value reaches the

target position

• 1 - Abort actual positioning and start next positioning

4 New setpoint A rising edge from 0 to 1 indicates a new setpoint

3 Enable operation Bits to trigger drive state machine changes

2 Quick stop

1 Enable voltage

0 Switched on

State machine changes are triggered by the following bit patterns in the Controlword

Command Controlword

LowByte [binary]

State transition (see state diagramm abov)

Shutdown 0xxx x110 2, 6, 8

Switch on 0xxx x111 3

Switch on & Enable operation 0xxx 1111 3, 4 (Automatic transition to state «Operation enabled» after

execution of command «Switch on»)

Disable voltage 0xxx xx0x 7, 9, 10, 12

Quick stop 0xxx x01x 11

Disable operation 0xxx 0111 5

Enable operation 0xxx 1111 4, 16

Fault reset 0xxx xxxx 1xxx

xxxx

14, 15

72 Nemesys Syringe Pump M / S - Firmware Specification

Before you can move the pusher, you need to set the pump drive into Operation Enabled state.

Operation Enabled means, the drive function is enabled and power is applied to the motor. Right after

power on or after a reset, the drive is not in Operation Enabled state. To set the drive into Operation

Enabled state, you need to control the internal drive state machine via the objects 0x6040 Controlword

and 0x6041 Statusword.

To clear the fault, we need to generate a rising edge for the Fault reset bit in the status word. That means

we write the value 0x80 to the object 0x6040 Controlword. Here is the example code from the RS233 C-

Library:

To check, if the fault has been cleared, simply read the Statusword and check if the fault bit is 0. Now we

can set the drive into enabled state. To do this, we need to send the Controlwords to trigger state

machine transitions until the drive is in state Operation Enabled. When the fault has been cleared, then

the drive statemachine should be in state Switch on disabled.

Nemesys Syringe Pump M / S - Firmware Specification 73

long NemV4ClearFault(TNemesysV4* Nemesys)

{

 long Result;

 Result = NemV4IsInFaultState(Nemesys);

 CSI_RETURN_ON_ERROR(Result);

 // If we are not in fault state, then we can return now

 if (!Result)

 {

 return ERR_NOERR;

 }

 // First we clear the error history and then we clear the fault state

 Result = NemV4_ClearErrHist(Nemesys);

 CSI_RETURN_ON_ERROR(Result);

 return NemV4_SetControlWord(Nemesys, CW_FAULT_RST); // CW_FAULT_RST = 0x80

}

To bring the drive into state Operation Enabled, we need to trigger transition 2, 3 and 4. To trigger the

transition 2 we send the Controlword 0x06 -Shutdown. After sending this Controlword we should be in

state Ready to switch on. You can always read the Statusword to verify that you are in the expected state.

Now we send the Controlword 0x0F - Switch on and Enable operation. This will first trigger transition 3 to

state Switched on and afterwards automatically trigger transition 4 into state Operation Enabled. Now

your device is ready for the first dosing command.

The following example code from the Nemesys RS232 C-Library shows, how a SetEnabled function can

be implemented in C:

74 Nemesys Syringe Pump M / S - Firmware Specification

Nemesys Syringe Pump M / S - Firmware Specification 75

long NemV4SetEnabled(TNemesysV4* Nemesys)

{

 uint16_t state;

 long Result;

 uint8_t loopcnt = 0;

 Result = NemV4ReadStatusWord(Nemesys, &state);

 CSI_RETURN_ON_ERROR(Result);

 // if drive is in fault state or in fault reaction state then we cannot enable

 // drive because the user has to clear the fault state first

 if (STATE_IS_FAULT(state) || STATE_IS_FAULT_REAC(state)) {

 return -ERR_DS402_DRV_ENABLE_FAULT_STATE;

 }

 // loop until we reach the operation enable state or until we reach the loop limit 10

 do {

 if (STATE_IS_QUICK_STOP(state)) {

 Result = NemV4_ExecDrvStateCmd(Nemesys, CW_OP_EN, &state, DRV_PROC_TIME);

 }

 else if (STATE_IS_SWON_DIS(state)) {

 Result = NemV4_ExecDrvStateCmd(Nemesys, CW_SHUTDOWN, &state, DRV_PROC_TIME);

 }

 else if (STATE_IS_SWON_RDY(state)) {

 Result = NemV4_ExecDrvStateCmd(Nemesys, CW_SWON, &state, DRV_PROC_TIME);

 }

 else if (STATE_IS_SWON(state)) {

 // if operation is enabled we set the halt bit in order to avoid a running drive

 Result= NemV4_ExecDrvStateCmd(Nemesys, CW_OP_EN | CWBIT_HALT, &state, DRV_PROC_TIME);

 }

 } while (!STATE_IS_OP_EN(state) && (loopcnt++ < 10) && (ERR_NOERR == Result));

 if (loopcnt <= 10) {

 return Result;

 }

 else {

 return -ERR_DS402_TIMEOUT_STATUSWORD;

 }

}

7.7 Dosing

7.7.1 Introduction

Normally all dosing tasks are performed in Profile Position Mode. That means for each dosing task you

need to set the volume (position), the flow rate (velocity) and you need to start/stop the pump using

the device Controlword.

7.7.2 Starting dosage

To start a dosage you need to access the following objects:

Index Subindex Object Description

0x6040 0 Controlword Write to this object to start / stop dosage

0x6041 0 Statusword Read current device state and status information from this object

0x607A 0 Target Position Defines the volume (position) for the next dosage

0x6081 0 Profile Velocity Defines the flow rate (velocity) for the next dosage

The pump supports absolute and relative dosing. A relative movement aspirates or delivers a certain

volume. The position value that you write into object 0x607A Target Position is relative to the current

position. Write a negative position value to aspirate and a positive position value to displense a certain

amount of fluid. After the movement, the syringe content is increased respectively decreased, by the

volume, just as a bank account has its balance increased or decreased by a credit or a debit. There is a

fixed relationship between the position of the piston and the content in the syringe.

IMPORTANT . Take care, that a relative movement does not move the pusher outside

of the travel range.

An absolute movement moves the piston of the syringe so that the syringe content reaches the

specified value. The position value that you write into object 0x607A Target Position is an absolute value

in the travel range from Minimum Position – Maximum Position. The actual movement is a delivering or

an aspiration as required to fulfil this purpose, or even no movement at all if the content is already equal

to the specified volume.

76 Nemesys Syringe Pump M / S - Firmware Specification

To start dosage, you need to perform the following steps:

(1) Enable the drive if it is not enabled yet according to the description in section Device Control via

Controlword

(2) Ensure that the operation mode is Profile Position.

(3) Convert the volume and flow values into position and velocity values according to section

Translation of volume / flow units.

(4) Write the position value into object 0x607A Target Position (increments)

(5) Write the velocity value into object 0x6081 Profile Velocity (internal velocity units according to

object 0x60A9 Si unit velocity)

(6) Start the dosage by writing to the object 0x6040 Controlword. Set the Abs/rel bit in the

Controlword to select absolute or relative dosing.

To start the dosage in step 6 we need to send the right Controlword. For profile position mode the

following four Controlword bits are relevant:

Bit Name Desription

8 Halt 0 – Execute or continue positioning 1 – Stop drive

6 Abs / rel 0 – Target position is an absolute value 1 - Target position is a relative value

5 Change set immediately • 0 - Finish actual positioning, then start next positioning. The actual positioning is

considered as completed as soon as the position demand value reaches the

target position

• 1 - Abort actual positioning and start next positioning

4 New setpoint A rising edge from 0 to 1 indicates a new setpoint

Because we do not want to trigger the drive state machine and we would like to keep the drive in

Operation Enabled state, we always send a Controlword that is a combination of 0x0F - Switch on and

Enable operation and of the relevant profile position mode bits from the table above.

Lets do a small example: We would like to dose a certain volume, that means we need to execute a

relative move – that means the Abs / rel bit (Bit 6) needs to be 1. We want to start the dosage

immediately – that means the Change set immediately bit (Bit 5) needs to be 1. The Halt bit (Bit 8)

needs to be cleared in order to enable positioning.

Nemesys Syringe Pump M / S - Firmware Specification 77

To signal a new setpoint, we need to generate a rising edge for the Bit 4 – New setpoint, To do this, we

fist send the Controlword 0x0F - Switch on and Enable operation to clear the New setpoint bit. Now we

can build our final Controlword and send it. To build the final Controlword we need to logically or the

following values:

• 0x0F – Switch on and Enable operation

• 0x40 – Abs / rel (Bit 6)

• 0x20 – Change set immediately (Bit 5)

• 0x10 – New setpoint (Bit 4)

That means, sending the final Controlword 0x7F will start the motion.

Read the section 5.3 Profile Position Mode in EPOS4-Firmware-Specification.pdf document for a detailed

description of the Controlword bits and how to start / stop positioning.

HINT . You only need to write Target Position and Profile Velocity objects, if you want to

change the values. If you would like to perform multiple dosing tasks with the same

volume or the same flow rate, then you only need to trigger the Controlword.

The following C-Code from the Nemesys RS232 library shows, how to start a dosage. The code starts

from point (4) of the steps above – that means, the drive is already enabled and in Profile Position Mode

and the volume and flow values are already converted into position and velocity values:

78 Nemesys Syringe Pump M / S - Firmware Specification

EPOS4-Firmware-Specification.pdf

7.7.3 Stopping dosage

To stop a running dosage set the Halt bit in the Controlword. The following C source code from the

Nemesys RS232 library shows, how to stop a dosage:

Nemesys Syringe Pump M / S - Firmware Specification 79

long NemV4MoveToPos(TNemesysV4* Nemesys, int32_t dwPosAbs, uint32_t dwVelocity)

{

 long Result;

 uint16_t wControlWord;

 // first write the target position

 Result = CsiDevWriteObject(&Nemesys->Device, NemV4_OD_H607A_TARGET_POSITION,

 0, dwPosAbs);

 CSI_RETURN_ON_ERROR(Result);

 // Then write the profile velocity

 Result = CsiDevWriteObject(&Nemesys->Device, NemV4_OD_H6081_PROFILE_VELOCITY,

 0, dwVelocity);

 CSI_RETURN_ON_ERROR(Result);

 // Now start movement. The movement is started by a rising edge of the

 // control word bit CWBIT_NEW_SET_POINT. Therefor we first write a

 // controlword with the bit cleared and the the second control word with the

 // bit set

 wControlWord = CW_OP_EN;

 Result = NemV4_SetControlWord(Nemesys, wControlWord);

 CSI_RETURN_ON_ERROR(Result);

 wControlWord = CW_OP_EN | CWBIT_NEW_SET_POINT | CWBIT_IMMEDIATELY;

 return NemV4_SetControlWord(Nemesys, wControlWord);

}

long NemV4Stop(TNemesysV4* Nemesys)

{

 long Result;

 uint16_t ControlWord = CW_OP_EN | CWBIT_HALT;

 Result = NemV4_SetControlWord(Nemesys, ControlWord);

 return Result;

}

7.8 Valve Switching
If there is an external valve connected to the Nemesys I/O interface, you can switch the valve position

by writing to the digital outputs object 0x60FE.

Index Subindex Object Description Type

0x60FE 1 Physical outputs Read / write the state of all digital outputs UNSIGNED32

The external valves are connected to the Nemesys digital outputs 1 and 2 which are mapped to the bits

16 and 17 of the digital outputs object.

Bit Method

16 Digital output 1 - General Purpose Out A

17 Digital output 2 - General Purpose Out B

If you use a valve with only one switching position, such as the CETONI 3/2 way smartvalve, then you

only need to switch the digital output 1. If you use a valve with more switching position, such as the

CETONI 3-4 Way Contiflow Valve, then you need to switch both digital outputs. The following table lists

some valves and their switching positions:

Valve Type Valve Position Dig. Out 1 Dig. Out 2 Bitmask (Bits 16 and 17)

3-2 Way Smartvalve Port 1 0 - 0x00000000

Port 2 1 - 0x00010000

3-4 Way Contiflow Valve Closed 0 0 0x00000000

Port 1 1 0 0x00010000

Port 2 0 1 0x00020000

Both ports open 1 1 0x00030000

3-3 Way Contiflow Ball Valve Closed 0 0 0x00000000

Port 1 1 0 0x00010000

Port 2 0 1 0x00020000

IMPORTANT . If you write the digital outputs, ensure that you only modify the bits 16

and 17 that are relevant for valve switching. That means you either need to read the

value before you change bits or you need to keep an internal shadow register.

80 Nemesys Syringe Pump M / S - Firmware Specification

7.9 Reading Analog Inputs
The Nemesys syringe pumps have two analog inputs. The analog input 1 is routed to the Nemesys I/O

interface. You can use it, to read the pressure of an external pressure sensor or to read the pressure of

the pressure sensor of a connected Contiflow valve.

The second analog input is used internally for measuring the internal force sensor.

Index Subindex Object Description Type

0x3160 1 Analog input 1 voltage The voltage measured at analog input 1 [mV]. INTEGER16

0x3160 2 Analog input 2 voltage The voltage measured at analog input 2 [mV]. INTEGER16

The returned value is the measured voltage in mV in the range from 0 – 10.000 mV. If there is a sensor

connected to one of the inputs, you just need to translate the voltage value into the sensor value.

Nemesys Syringe Pump M / S - Firmware Specification 81

7.10 Force Monitoring

7.10.1 Overview

The Nemesys S and Nemesys M syringe pumps have an internal force sensor for force monitoring and

safety stop in case of too high forces (pressures). The following table shows the device force limits for

both pumps:

Pump Type Device Force Limit (N)

Nemesys M 1300

Nemesys S 480

If the measured force raises above the force limit, the pump stops immediately with a quick stop.

7.10.2 Reading Internal Force Sensor

The Nemesys pumps have an internal force sensor that is connected to the internal analog input 2. To

read the force sensor, you just need to read the analog input 2 value like written in section Reading

Analog Inputs and then convert this value into a force value.

Pump Type Force Sensor Scaling

x1 (mV) y1 (N) x2 (mV) y2 (N) Factor m Offset n

Nemesys M 0 0 5650 1000 0,176991 0

Nemesys S 0 0 3000 400 0,133333 0

To convert between the analog input value and the force sensor value, you can use this formula:

Force (N) = Analog Value (mV) * y2 (N) / x2 (mV)

That means, if you measure a voltage of 2800 mV in your Nemesys S syringe pump, then the internal

force sensor measures the following force value:

Force = 2800 mV * 400 N / 3000 mV ≈ 267 N

82 Nemesys Syringe Pump M / S - Firmware Specification

7.10.3 Setting a custom force limit

It is possible to reduce the force limit below the maximum device force by setting a custom force limit if

this is required by your application. Setting a custom force limit can be done, by writing the analog

output value 2. The analog output 2 is a threshold value for the internal force monitoring logic.

Index Sub Object Description Type

0x3182 2 Analog output general Purpose B Output voltage in mV (-4000 mV - +4000 mV) INTEGER32

To set a force limit, you need to translate the force into an output voltage. The following table lists the

scaling factors depending on the device type:

Pump Type Force Limit Scaling

x1 (mV) y1 (N) x2 (mV) y2 (N) Factor m Offset n

Nemesys M 1650 1000 3920 0 -0,440529 1726,872

Nemesys S 740 400 1940 0 -0,333333 646,667

With the scaling parameters x1, y1, x2 and y2 you can calculate the scaling factor m and scaling offset n.

m = (y2 – y1) / (x2 – x1)

n = y1 – m * x1

Now you can convert a force value into a voltage value with the formula y = m * x + n. To convert from

force into voltage, we simply solve the equation to x. That means, we can convert a force value into a

voltage value with the following formula:

x = (y – n) / m

Let’s do an example. We calculate the conversion factor and offset for a Nemesys M pump (or we simply

take the values from the table above):

Scaling factor m = (y2 – y1) / (x2 – x1) = (0- 1000) / (3920 – 1650) = -0,440529

Scaling offset n = y1 – m * x1 = 1000 + 0,440529 * 1650 = 1726,872

Now we can use m and n for conversion. We would like to limit the force to 500 N.

Voltage (mV) = (Force – n) / m = (500 N – 1726,872) / -0,440529 = 2785

Nemesys Syringe Pump M / S - Firmware Specification 83

Now we can write the voltage value 2785 into the object 0x3182 Subindex 2.

IMPORTANT . Only force limits in the range from 0 to the maximum device force are

allowed. That means, for Nemesys M the allowed force range is 0 – 1300 N and for

Nemesys S the allowed force range is 0 – 480 N.

7.10.4 Reading Safety Stop Input

In case of a force that is higher than the configured force limit or higher than the maximum device force,

a safety stop is executed. That means, the pump drive is stopped to prevent damage by too high forces.

You can monitor the safety stop input to know, when a safety stop occurs.

Index Sub Object Description Type

0x60FD 0 Digital Inputs Displays the state of the digital input functionalities UNSIGNED32

The safety stop input is mapped into bit 28 of the digital input bitfield. So if you would like to check if

the safety stop is active, read the digital inputs object 0x60FD Subindex 0 and test for bit 28.

7.10.5 Enable / Disable Force Monitoring

If the internal force monitoring detects a force higher than the force limit, the pump drive is stopped

immediately with the safety stop input. It is not possible to move the pump in this state. To lower the

force below the force limit, the force monitoring needs to get disabled. Enabling / Disabling the force

limit is possible by writing to the object 0x3141 Subindex 2 Digital inputs polarity.

Index Sub Object Description Type

0x3141 2 Digital inputs polarity Used to set the polarity of the digital input functionalities. UNSIGNED16

To enable / disable force monitoring, you need to set bit 0 of the digital inputs polarity mask as follows:

• Enable force monitoring: set bit 0 to 0

• Disable force monitoring: set bit 0 to 1

To avoid changing any other bits in the polarity mask, you fist need to read the current polarity mask

from the device, then change bit 0 in you software and then write the new polarity mask back to the

device. The following example C source code from the Nemesys RS232 library shows this:

84 Nemesys Syringe Pump M / S - Firmware Specification

7.10.6 How to resolve a force overload situation

If the internal force monitoring detects a force higher than the force limit, the pump drive is stopped

immediately with the safety stop input. It is no longer possible to carry out any dosing with the pump in

this state. To resolve this force overload situation, you need to reduce the force below the force limit

threshold. There are different ways to reduce the pressure:

1. by using some kind of overpressure valve

2. by waiting until the pressure is released

3. by pulling back the syringe plunger (aspirating)

The force monitoring functionality has a hysteresis. In case of a force overload situation the current

force needs to be ca. 0.1 kN lower then the current force limit to reset the safety stop input. If you have

an overpressure valve or some switch to release the pressure, you can lower the force without moving

the syringe pump pusher. If it is not possible for you, to lower the force until it is 0.1 kN below the force

limit, then you can lower it less (for example 0.02 kN) and then elevate the force limit for a short time by

a fixed offset (such as 0.09 kN) to overcome the hysteresis of 0.1 kN and to clear the safety stop input.

The following example code from the Nemesys RS232 Library function

NemV4ClearForceSafetyStop shows this:

Nemesys Syringe Pump M / S - Firmware Specification 85

long NemV4EnableForceMonitoring(TNemesysV4* Nemesys, int Enable)

{

 long Result;

 uint32_t InputsPolarity;

 Result = CsiDevReadObject(&Nemesys->Device, NemV4_OD_H3141_DIG_INPUTS_PROPERTIES,

 2, &InputsPolarity);

 CSI_RETURN_ON_ERROR(Result);

 InputsPolarity &= ~0x01;

 if (!Enable)

 {

 InputsPolarity |= 0x01;

 }

 return CsiDevWriteObject(&Nemesys->Device, NemV4_OD_H3141_DIG_INPUTS_PROPERTIES,

 2, InputsPolarity);

}

If you have no option to reduce the pressure via a switch or a valve, then you need to reduce the force

by pulling the pusher. You can only move the pusher, if you disable force monitoring. That means, before

you can reduce the force by pulling the pusher, you need to disable force monitoring.

ATTENTION . If force monitoring is disabled, you should only aspirate and never

dispense to avoid damaging your syringe or the device!

To resolve a force overload situation by pulling the syringe pusher, you should follow the steps below:

(1) Disable force monitoring like written in section Enable / Disable Force Monitoring

(2) Command an aspiration with a low flow rate to lower the force

(3) As soon as the force drops below the force limit, the force monitoring stops the pump drive via

the safety stop input. Just monitor the safety stop input, to know, when the force dropped below

the force limit.

(4) If it is no possible for you, to lower the force 0.1 kN below the current force limit, then you can

86 Nemesys Syringe Pump M / S - Firmware Specification

long NemV4ClearForceSafetyStop(TNemesysV4* Nemesys)

{

 long Result;

 float ForceLimit_kN;

 float ElevatedForceLimit_kN;

 // First we read the current force limit

 Result = NemV4ReadForceLimit(Nemesys, &ForceLimit_kN);

 CSI_RETURN_ON_ERROR(Result);

 // Now we elevate the force limit to compensate for the hysteresis

 ElevatedForceLimit_kN = ForceLimit_kN + ElevatedForceOffset_kN;

 ElevatedForceLimit_kN = (ElevatedForceLimit_kN > Nemesys->MaxForce_kN)

 ? Nemesys->MaxForce_kN : ElevatedForceLimit_kN;

 Result = NemV4WriteForceLimit(Nemesys, ElevatedForceLimit_kN);

 CSI_RETURN_ON_ERROR(Result);

 CsiSleep(50); // give device some time to process the change

 // Now we restore the previous force limit

 return NemV4WriteForceLimit(Nemesys, ForceLimit_kN);

}

elevate the force limit for a short time (some milliseconds) to clear the safety stop input

(5) Enable force monitoring like written in section Enable / Disable Force Monitoring

(6) Now the pump is ready for the next dosing commands

Nemesys Syringe Pump M / S - Firmware Specification 87

8 Development Tools

8.1 Tools for RS232 Protocol Implementation
Implementing the RS232 industrial protocol with CRC checksum is somewhat more difficult than

implementing a simple ASCII protocol. To simplify and speed up the implementation, find errors in the

protocol implementation or to monitor the serial frames, we recommend the following tools:

8.1.1 EPOS Studio

The EPOS Studio software is a powerful tool for access to all device parameters of the pump drive via

RS232 or CAN interface. With the EPOS Studio Object Dictionary Tool it is possible to read and write

entries of the CANopen object dictionary. With this tool you can modify parameters or verify, if your

implementation has properly read or written certain parameters:

The EPOS Studio Command Analyzer will help you to analyze the low level RS232 protocol including

Nemesys Syringe Pump M / S - Firmware Specification 89

checksum calculation. With this tool you can execute certain commands and access the object

dictionary and you will see the corresponding serial protocol frames including CRC and stuff bytes.

You can download the EPOS Studio software here: Download.

90 Nemesys Syringe Pump M / S - Firmware Specification

https://www.maxongroup.ch/medias/sys_master/root/8839888044062/EPOS-2-4-IDX-Setup.zip

8.1.2 Serial Port Monitor

With a serial port monitor, you can monitor the low level data frames on the serial line.

This helps you to see and understand the RS232 frame structure and RS232 checksum calculation. It will

also help you, to find and trace errors in your serial protocol implementation. At CETONI we use this

serial port monitor: https://www.hhdsoftware.com/serial-port-monitor.

8.1.3 Nemesys V4 RS232 Library Documentation

The Nemesys RS232 Library is an open source implementation of the industrial RS232 protocol in plain

C language. The library is well structured and well documented. If you understand C language a little bit,

then this library will be a valuable helper for you and you can use it as a template for your

implementation. You can browse the online documentation here.

If you would like to learn about the low level serial serial protocol implementation, then you should look

into the CSI library. If you would like to learn about the implementation of the Nemesys V4 pump

functionality, then you should look into the Nemesys V4 API of the Nemesys RS232 Library.

Nemesys Syringe Pump M / S - Firmware Specification 91

https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/group__nem4__rs232__api.html
https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/csi_api_mainpage.html
https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/index.html
https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/index.html
https://www.hhdsoftware.com/serial-port-monitor

8.2 Tools for CANopen implementation

8.2.1 EPOS Studio

The EPOS Studio software is a powerful tool for access to all device parameters of the pump drive via

RS232 or CAN interface. With the EPOS Studio Object Dictionary Tool it is possible to read and write

entries of the CANopen object dictionary. With this tool you can modify parameters or verify, if your

implementation has properly read or written certain parameters.

The software also allows you to execute positioning commands via its graphical interface.

You can download the EPOS Studio software here: Download.

8.2.2 CETONI Elements CANopen Tools Plugin

The CETONI Elements software from CETONI has an CANopen-Tools Plugin which transforms the

software into a powerful tool to configure CANopen devices, access the CANopen object dictionary of

the Nemesys pumps and to monitor, log and analyze the CAN-Bus traffic and the CANopen protocol of

the pumps.

This tool will help you to read and write object dictionary entries and to monitor the CAN-bus traffic of

92 Nemesys Syringe Pump M / S - Firmware Specification

https://cetoni.com/cetoni-elements/
https://www.maxongroup.ch/medias/sys_master/root/8839888044062/EPOS-2-4-IDX-Setup.zip

your PLC, PC or embedded control device connected to the Nemesys pumps.

Read the section CANopen Tools Workbench in the CETONI Elements manual to learn how to open and

use this tool.

Nemesys Syringe Pump M / S - Firmware Specification 93

https://cetoni.de/downloads/manuals/CETONI_Elements_Manual_EN.pdf
https://cetoni.de/downloads/manuals/CETONI_Elements_Manual_EN.pdf

	1 Summaries and directories
	1.1 Table of contents
	1.2 Change history

	2 About this Document
	2.1 Intended Purpose
	2.2 Target Audience
	2.3 Symbols and Signal Words Used

	3 System Overview
	3.1 General Device Architecture
	3.2 Object Dictionary

	4 CAN Communication
	4.1 Introduction
	4.2 Reference Model of Data Communication
	4.3 CAN-Bus
	4.3.1 CAN in the OSI reference model
	4.3.2 Bus topology and data rate
	4.3.3 Message transfer
	4.3.4 Bus access
	4.3.5 Length of the payload data
	4.3.6 Structure of CAN Frames
	4.3.7 Error Checking and Fault Confinement

	4.4 CANopen Basics
	4.4.1 Introduction
	4.4.2 Physical Structure of the CAN Network

	4.5 Communication Objects
	4.5.1 Service Data Objects – SDOs
	4.5.2 Process Data Objects – PDOs
	4.5.2.1 PDO Configuration Parameters
	4.5.2.2 PDO Mapping Parameters

	4.5.3 Sync Object

	4.6 Network Management – NMT
	4.6.1 NMT Services

	4.7 CANopen Error Handling – EMCY
	4.7.1 Principle
	4.7.2 Emergency Message Frame

	5 CANopen Serial Interface (CSI)
	5.1 Overview
	5.2 Physical Layer
	5.2.1 Electrical Standard
	5.2.2 Medium

	6 Industrial RS232 Protocol with CRC checksum
	6.1 Introduction
	6.2 Protocol and Flow Control
	6.3 Frame Structure
	6.4 CRC – Cyclic Redundancy Check
	6.4.1 CRC Calculation
	6.4.2 CRC Algorithm

	6.5 Byte Stuffing
	6.6 Transmission Byte Order
	6.7 Data Format
	6.8 Timeout Handling
	6.9 Slave (device) state machine
	6.10 Command Reference
	6.10.1 Read Functions
	6.10.1.1 Read Object Dictionary Entry (4 Data Bytes and less)

	6.10.2 Write Functions
	6.10.2.1 Write Object Dictionary Entry (4 Data Bytes and less)

	6.11 Example Frames
	6.11.1 Reading Object 0x1000 – Device Type
	6.11.1.1 Frame Setup
	6.11.1.2 CRC Calculation
	6.11.1.3 Create Byte stream and send Data
	6.11.1.4 Wait for the receive frame
	6.11.1.5 Remove Byte Stuffing in Synchronization Elements
	6.11.1.6 CRC Check
	6.11.1.7 Check The Received Data

	6.11.2 Writing Object 0x1017 – Producer Heartbeat Time
	6.11.2.1 Frame Setup
	6.11.2.2 CRC Calculation
	6.11.2.3 Create Byte stream and send Data
	6.11.2.4 Wait for the receive frame
	6.11.2.5 Remove Byte Stuffing in Synchronization Elements
	6.11.2.6 CRC Check
	6.11.2.7 Check The Received Data

	6.12 Communication Error Code Definition

	7 Pump Control
	7.1 Object Dictionary
	7.2 Operating Modes
	7.3 Translation of volume / flow units
	7.3.1 Introduction
	7.3.2 Reading out device parameters
	7.3.2.1 Overview
	7.3.2.2 SI unit velocity
	7.3.2.3 Encoder Resolution
	7.3.2.4 Gear Factor

	7.3.3 Position value conversion
	7.3.3.1 Calculating the position conversion factor
	7.3.3.2 Conversion of position values
	7.3.3.3 Example position conversion

	7.3.4 Velocity value conversion
	7.3.4.1 Calculating the velocity conversion factor
	7.3.4.2 Conversion of velocity values
	7.3.4.3 Example velocity conversions

	7.3.5 Volume value conversions
	7.3.5.1 Calculation
	7.3.5.2 Example volume conversion

	7.3.6 Flow value conversions
	7.3.6.1 Calculation
	7.3.6.2 Example flow conversion

	7.4 Reading out device configuration
	7.4.1 Device Overview
	7.4.2 Calculating the travel range
	7.4.3 Calculating the maximum flow rate
	7.4.4 Reading out the device type

	7.5 Initializing
	7.6 Pump Drive Control
	7.6.1 Drive State Machine
	7.6.2 Reading State of Drive
	7.6.3 Device Control via Controlword

	7.7 Dosing
	7.7.1 Introduction
	7.7.2 Starting dosage
	7.7.3 Stopping dosage

	7.8 Valve Switching
	7.9 Reading Analog Inputs
	7.10 Force Monitoring
	7.10.1 Overview
	7.10.2 Reading Internal Force Sensor
	7.10.3 Setting a custom force limit
	7.10.4 Reading Safety Stop Input
	7.10.5 Enable / Disable Force Monitoring
	7.10.6 How to resolve a force overload situation

	8 Development Tools
	8.1 Tools for RS232 Protocol Implementation
	8.1.1 EPOS Studio
	8.1.2 Serial Port Monitor
	8.1.3 Nemesys V4 RS232 Library Documentation

	8.2 Tools for CANopen implementation
	8.2.1 EPOS Studio
	8.2.2 CETONI Elements CANopen Tools Plugin

