
neMESYS Syringe Pump
Firmware Specification

ORIGINAL MANUAL - SEPTEMBER 2021

CETONI GmbH

Wiesenring 6

07554 Korbussen

Germany

T +49 (0) 36602 338-0

F +49 (0) 36602 338-11

E info@cetoni.de

www.cetoni.de

2 neMESYS Firmware Specification

http://www.cetoni.de/

neMESYS Firmware Specification 3

1 Summaries and directories

1.1 Table of contents
1 Summaries and directories 5

1.1 Table of contents 5

1.2 Change history 9

2 About this Document 11

2.1 Intended Purpose 11

2.2 Target Audience 11

2.3 Symbols and Signal Words Used 11

3 System Overview 13

3.1 General Device Architecture 13

3.2 Object Dictionary 13

4 CAN Communication 17

4.1 Introduction 17

4.2 Reference Model of Data Communication 17

4.3 CAN-Bus 18

4.3.1 CAN in the OSI reference model 18

4.3.2 Bus topology and data rate 18

4.3.3 Message transfer 18

4.3.4 Bus access 18

4.3.5 Length of the payload data 19

4.3.6 Structure of CAN Frames 19

4.3.7 Error Checking and Fault Confinement 20

4.4 CANopen Basics 21

4.4.1 Introduction 21

neMESYS Firmware Specification 5

4.4.2 Physical Structure of the CAN Network 22

4.5 Communication Objects 23

4.5.1 Service Data Objects – SDOs 24

4.5.2 Process Data Objects – PDOs 25

4.5.3 Sync Object 27

4.6 Network Management – NMT 29

4.6.1 NMT Services 29

4.7 CANopen Error Handling – EMCY 31

4.7.1 Principle 31

4.7.2 Emergency Message Frame 31

5 CANopen Serial Interface (CSI) 33

5.1 Overview 33

5.2 Physical Layer 33

5.2.1 Electrical Standard 33

5.2.2 Medium 33

6 Industrial RS232 Protocol with CRC checksum 35

6.1 Introduction 35

6.2 Protocol and Flow Control 35

6.2.1 Sequence of sending commands 35

6.2.2 Sending a data frame 36

6.2.3 Receiving a data frame 37

6.3 Frame Structure 38

6.3.1 Overview 38

6.3.2 Header 38

6.3.3 Data 38

6.3.4 CRC 39

6.4 Error Control 39

6.4.1 CRC Calculation 39

6.5 Transmission Byte Order 40

6.6 Data Format 40

6 neMESYS Firmware Specification

6.7 Timeout Handling 40

6.8 Slave (device) implementation state machine 42

6.9 Master implementation state machine 43

6.10 Command Reference 44

6.10.1 Read Functions 44

6.10.2 Write Functions 47

6.11 Example Frames 50

6.11.1 Reading Object 0x1000 – Device Type 50

6.11.2 Writing Object 0x1017 – Producer Heartbeat Time 52

6.11.3 Reading Object 0x6041 – Statusword of a nemesys syringe pump 53

6.11.4 Writing Object 0x6040 – Controlword of nemesys syringe pump 54

6.11.5 Writing Object 0x607A – Target Position of nemesys syringe pump 55

7 Pump Control 57

7.1 Drive Control Overview 57

7.2 Operating Modes 58

7.3 Translation of volume / flow units 58

7.3.1 Introduction 58

7.3.2 Reading out device parameters 58

7.3.3 Position value conversion 60

7.3.4 Velocity value conversion 61

7.3.5 Volume value conversions 62

7.3.6 Flow value conversions 63

7.4 Enabling drive 64

7.5 Initializing position counter (Homing) 64

7.5.1 Overview 64

7.5.2 Homing move 65

7.5.3 Restoring position counter 67

7.6 Dosing 69

7.6.1 Introduction 69

7.6.2 Reading device configuration 69

neMESYS Firmware Specification 7

7.6.3 Starting dosage 70

7.6.4 Stopping dosage 72

7.7 Valve Switching 72

7.7.1 Switching internal Valve (Nemesys Low Pressure only) 72

7.7.2 Switching external Valve connected to I/O interface 73

7.8 Reading Pressure Sensor / Analog Inputs 73

8 Development Tools 74

8.1 Tools for RS232 Protocol Implementation 74

8.1.1 EPOS Studio 74

8.1.2 Serial Port Monitor 75

8.1.3 Nemesys V4 RS232 Library Documentation 76

8.2 Tools for CANopen implementation 76

8.2.1 EPOS Studio 76

8.2.2 CETONI Elements CANopen Tools Plugin 77

8 neMESYS Firmware Specification

1.2 Change history
REVISION CHANGE

28.11.2006 Creation of document

18.12.2006 Added neMESYS RS232 Library documentation

16.02.2014 Removed RS232 Library command reference because it is already in file neMESYS_RS232_Library.chm

12.02.2016 Added Pump Control chapter for a detailed description of common neMESYS pump control tasks

11.12.2019 Added example frames for RS232 protocol

Added documentation for reading analog input values

05.07.2021 Added Development Tools section

14.09.2021 Improved valve switching documentation

neMESYS Firmware Specification 9

2 About this Document

2.1 Intended Purpose
The purpose of the present document is to familiarize you with the described equipment and the tasks

on safe and adequate installation and/or commissioning. Observing the described instructions in this

document will help you:

• to avoid dangerous situations,

• to keep installation and/or commissioning time at a minimum and

• to increase reliability and service life of the described equipment.

Use for other and/or additional purposes is not permitted. cetoni, the manufacturer of the equipment

described, does not assume any liability for loss or damage that may arise from any other and/or

additional use than the intended purpose.

2.2 Target Audience
This document is meant for trained and skilled personnel working with the equipment described. It

conveys information on how to understand and fulfill the respective work and duties. This document is a

reference book. It does require particular knowledge and expertise specific to the equipment described.

2.3 Symbols and Signal Words Used
The following symbols are used in this manual and are designed to aid your navigation through this

document:

HINT . Describes practical tips and useful information to facilitate the handling of the

software.

neMESYS Firmware Specification 11

IMPORTANT . Describes important information and other especially useful notes, in

which no dangerous or damaging situations can arise.

ATTENTION . Indicates a potentially damaging situation. Failure to avoid this situation

may result in damage to the product or anything nearby.

CAUTION . Describes a situation that may be dangerous. If this aspect is not avoided,

light or minor injuries as well as damage to property could result.

12 neMESYS Firmware Specification

3 System Overview

3.1 General Device Architecture
The device implements a CANopen slave device. CANopen is the internationally standardized (EN

50325-4) higher-layer protocol for embedded control system. The set of CANopen specification

comprises the application layer and communication profile as well as application, device, and interface

profiles. CANopen provides very flexible configuration capabilities. These specifications are developed

and maintained by CiA members.

The communication interface of the device follows the CiA CANopen specifications as follows:

• CiA 301 – Application Layer and Communication Profile

• CiA 306 – Electronic Data Sheet Specification

• CiA 303-2 – Representation of SI units and prefixes

• CiA 303-3 – Indicator Specification

A CANopen device can be logically structured in three parts.

One part provides the communication interface (CAN, RS232) and another part provides the device's

application, which controls e.g. the Input/Output (I/O) lines of the device in case of an I/O module.

The interface between the application and the CAN-interface is implemented in the object dictionary.

The object dictionary is unique for any CANopen device. It is comparable to a parameter list and offers

the access to the supported configuration- and process data.

The following section explains the basic concepts related to the CANopen protocol application layer.

This document is intended as a basic overview only, and users are encouraged to review the CiA DS 301

specification for more information.

3.2 Object Dictionary
The most significant part of any CANopen device is the Object Dictionary. It is essentially a grouping of

neMESYS Firmware Specification 13

objects accessible via the network (via CAN or RS232) in an ordered, predefined fashion. The object

dictionary is essentially a table, that stores configuration and process data. The figure below shows an

example of an object dictionary. Each object within the dictionary is addressed using a 16-bit index ❶

and an 8-bit subindex ❷.

The 16-bit index ❶ is used to address all entries within the Object Dictionary. In case of a simple

variable, it references the value of this variable directly. In case of records and arrays however, the index

addresses the entire data structure. The subindex ❷ permits individual elements of a data structure to

be accessed via the network.

• For single Object Dictionary entries (such as UNSIGNED8, BOOLEAN, INTEGER32, etc.), the

subindex value is always zero.

• For complex Object Dictionary entries (such as arrays or records with multiple data fields), the

subindex references fields within a data structure pointed to by the main index. This allows for

up to 255 sub-entries at each index. Each entry can be variable in type and length.

The overall layout of the standard Object Diction-ary conforms to other industrial field bus concepts.

Index Description

0000h Reserved

14 neMESYS Firmware Specification

Figure 1: Object dictionary example

0001h-009Fh Data types (not supported)

00A0h-0FFFh Reserved

1000h-1FFFh Communication Profile Area (CiA 301)

2000h-5FFFh Manufacturer-specific Profile Area

6000h-9FFFh Standardized Device Area (e.g. CiA 401 – I/O Modules)

A000h-FFFFh Reserved

Table 1: Object dictionary layout

Access to each object dictionary entry is possible via SDO transfer (CAN) or via RS232 protocol by

simply providing the index and sub index of the object dictionary entry to access.

neMESYS Firmware Specification 15

4 CAN Communication

4.1 Introduction
This chapter provides general information about CAN communication and CANopen application layer.

The information is relevant only for devices that support CAN communication via CAN interface. If your

device only supports serial communication via RS232 CANopen Serial Interface (CSI), you can skip this

chapter.

HINT . An excellent and easy to understand introduction to CAN and CANopen is

available here:

http://www.canopensolutions.com/english/about_canopen/about_canopen.shtml

HINT . You can skip this chapter if your device does not support communication via

CAN interface.

4.2 Reference Model of Data Communication
The Open Systems Interconnection Reference Model (OSI Reference Model) forms the basis for the

description of communication systems today. The OSI model describes data communication systems in

the form of a layer model, consisting of seven different layers, and assigns specific services to each layer.

Simpler communication systems do not require all the functionalities of the OSI model. In general, only

three layers (physical layer, data link layer and application layer) are relevant for data communication in

the automation area.

The three layers shown in the figure implement the most important tasks of data communication in the

fieldbus area.

neMESYS Firmware Specification 17

http://www.canopensolutions.com/english/about_canopen/about_canopen.shtml

Application Process

Layer 7 Application Layer

Layer 2 Data Link Layer

Layer 1 Physical Layer

4.3 CAN-Bus

4.3.1 CAN in the OSI reference model
The CAN protocol was specified by the company BOSCH. Regarding the OSI reference model, the CAN

specification implements the data link layer completely and the physical layer partially. The physical

signal representation is defined in the CAN protocol, while the form of the bus medium and the bus

coupling was not specified.

4.3.2 Bus topology and data rate
The CAN bus uses a linear bus topology. The number of nodes is not limited by the CAN protocol, but

depends on the performance of the driver chips used. Data rates up to 1 Mbit/s (network extension up

to 40 m) and network extensions up to 1,000 m (at 80 Kbit/s) are possible. Two-wire lines with

differential levels as well as fibre optic cables are possible as transmission medium.

4.3.3 Message transfer
The message receiver is not addressed, but the CAN messages are identified by a unique identifier – the

CAN ID. Message transmission is based on the producer-consumer principle. This means that a

message sent by one CAN node (producer) can be received by all other CAN nodes (consumers). On the

basis of the message identifier, a subscriber decides whether a message is relevant for him or not.

4.3.4 Bus access
The identifier of a CAN message determines its priority. The message with the lowest CAN ID has the

18 neMESYS Firmware Specification

highest priority. Each message ID may only be sent from one CAN node in the system to avoid collisions.

If several CAN nodes start sending a message at the same time, a collision occurs. This conflict is

resolved by giving the message with the highest priority (with the lowest ID) bus access.

If the message with the highest priority has been sent, bus arbitration starts again for the remaining

messages until all messages have been sent. This ensures that messages are not destroyed or lost.

4.3.5 Length of the payload data
The maximum data length of a CAN message is limited to 8 bytes. This enables fully functional data

transmission in very difficult electromagnetic environments and guarantees short latency times for bus

access of high priority messages.

4.3.6 Structure of CAN Frames
The CAN specification distinguishes between two compatible message formats, the standard format

with 11 bit identifier and the extended format with 29 bit identifier. CETONI devices only use messages

with 11-bit identifiers. A CAN message in standard format is shown in figure below and consists of:

• The Data Frame begins with a dominant Start of Frame (SOF) bit for hard synchronization of all

nodes.

• The SOF bit is followed by the Arbitration Field reflecting content and priority of the message.

• The next field – the Control Field – specifies mainly the number of bytes of data contained in

the message.

• The Cyclic Redundancy Check (CRC) field is used to detect possible transmission errors. It

consists of a 15-bit CRC sequence completed by the recessive CRC delimiter bit.

• During the Acknowledgment (ACK) field, the transmitting node sends out a recessive bit. Any

node that has received an error-free frame acknowledges the correct reception of the frame by

returning a dominant bit.

• The recessive bits of the End of Frame (EOF) terminate the Data Frame. Between two frames, a

neMESYS Firmware Specification 19

recessive 3-bit Intermission field must be present.

CETONI devices only use messages with 11-bit identifiers:

• The Identifier’s (COB-ID) length in the Standard Format is 11 bit.

• The Identifier is followed by the RTR (Remote Transmission Request) bit. In Data Frames, the

RTR bit must be dominant, within a Remote Frame, the RTR bit must be recessive.

• The Base ID is followed by the IDE (Identifier Extension) bit transmitted dominant in the

Standard Format (within the Control Field).

• The Control Field in Standard Format includes the Data Length Code (DLC), the IDE bit, which is

transmitted dominant and the reserved bit r0, also transmitted dominant.

• The reserved bits must be sent dominant, but receivers accept dominant and recessive bits in all

combinations.

4.3.7 Error Checking and Fault Confinement
The robustness of CAN may be attributed in part to its abundant error-checking procedures. The CAN

protocol incorporates five methods of error checking: three at the message level and two at the bit level.

If a message fails any one of these error detection methods, it is not accepted and an error frame is

generated from the receiving node. This forces the transmitting node to resend the message until it is

received correctly. However, if a faulty node hangs up a bus by continuously repeating an error, its

transmit capability is removed by its controller after an error limit is reached. The following methods for

error detection are used:

• Error checking at the message level is enforced by the CRC and the ACK slots. The 16-bit CRC

contains the checksum of the preceding application data for error detection with a 15-bit

checksum and 1-bit delimiter. The ACK field is two bits long and consists of the acknowledge bit

and an acknowledge delimiter bit.

• Also at the message level is a form check. This check looks for fields in the message which must

20 neMESYS Firmware Specification

Figure 2: Standard frame format

always be recessive bits. If a dominant bit is detected, an error is generated. The bits checked are

the SOF, EOF, ACK delimiter, and the CRC delimiter bits

• At the bit level, each bit transmitted is monitored by the transmitter of the message. If a data bit

(not arbitration bit) is written onto the bus and its opposite is read, an error is generated. The

only exceptions to this are with the message identifier field which is used for arbitration, and

the acknowledge slot which requires a recessive bit to be overwritten by a dominant bit.

• The final method of error detection is with the bit-stuffing rule where after five consecutive bits

of the same logic level, if the next bit is not a complement, an error is generated.

CAN uses the principle of error signalling. Detected errors are reported to the other network users by

sending an error frame. This ensures that the communication with all functioning CAN nodes of a

network is error-free and consistent and guarantees very short error response times.

4.4 CANopen Basics

4.4.1 Introduction
CANopen is a standardized application for distributed automation systems based on CAN (Controller

Area Network) offering the following performance features:

• Transmission of time-critical process data according to the producer consumer principle

• Standardized device description (data, parameters, functions, programs) in the form of the so-

called "object dictionary". Access to all "objects" of a device with standardized transmission

protocol according to the client-server principle

• Standardized services for device monitoring (node guarding/heartbeat), error signalisation

(emergency messages) and network coordination ("network management")

• Standardized system services for synchronous operations (synchronization message), central

time stamp message

• Standardized help functions for configuring baud rate and device identification number via the

bus

• Standardized assignment pattern for message identifiers for simple system configurations in the

form of the so-called "predefined connection set"

neMESYS Firmware Specification 21

Subsequently described are the CANopen communication features most relevant to the CETONI

CANopen devices. For more detailed information consult above mentioned CANopen documentation.

The CANopen communication concept can be described similar to the ISO Open Systems

Interconnection (OSI) Reference Model. CANopen represents a standardized application layer and

communication profile

4.4.2 Physical Structure of the CAN Network
CANopen is a networking system based on the CAN serial bus. It assumes that the device’s hardware

features a CAN transceiver and a CAN controller as specified in ISO 11898. The physical medium is a

differently driven 2-wire bus line with common return. The underlying CAN architecture defines the

basic physical structure of the CANopen network. Therefore, a line (bus) topology is used. To avoid

reflections of the signals, both ends of the network must be terminated. In addition, the maximum

permissible branch line lengths for connection of the individual network nodes are to be observed.

22 neMESYS Firmware Specification

Figure 3: Protocol Layer Interactions

The recommended permissible bit rates for a CANopen network are given in CiA 301: 10 kbps, 20 kbps,

50 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps and 1000 kbps. In CiA 301 a recommendation for the

configuration of the bit timing is also given.

Additionally, for CANopen, two additional conditions must be fulfilled:

• All nodes must be configured to the same bit rate and

• No node-ID may exist twice.

4.5 Communication Objects
CANopen uses communication objects for data transmission in the network. The following

communication objects are specified by CANopen:

• Service data objects (SDO) are used to access the entries in the object dictionary.

• Process data objects (PDO) are used for fast transmission of

process information

• Objects with special functions provide various system services (synchronization objects, time

service objects, emergency objects)

• Network management objects (NMT) are necessary to start, stop

and monitoring of network participants

In a CAN network, all objects refer to a specific message identifier. This means that each communication

object has a unique CAN ID, and certain CAN message IDs are reserved for certain objects.

neMESYS Firmware Specification 23

Figure 4: ISO 11898 basic network setup

4.5.1 Service Data Objects – SDOs
With Service Data Objects (SDOs), the access to entries of a device Object Dictionary is provided. A

SDO is mapped to two CAN Data Frames with different identifiers, because communication is con-

firmed. By means of a SDO, a peer-to-peer communication channel between two devices may be estab-

lished. The owner of the accessed Object Dictionary is the server of the SDO. A device may support

more than one SDO, one supported SDO is mandatory and the default case.

Read and write access to the CANopen Object Dictionary is performed by SDOs. The Client/Server

Command Specifier contains the following information:

• download/upload

• request/response

• segmented/expedited transfer

• number of data bytes

• end indicator

• alternating toggle bit for each subsequent segment

SDOs are described by the communication parameter. The default Server SDO (S_SDO) is defined in the

entry “1200h”. In a CANopen network, up to 256 SDO channels requiring two CAN identifiers each may

be used.

24 neMESYS Firmware Specification

Abbildung 4.1: Service Data Object (SDO)

4.5.2 Process Data Objects – PDOs
Process data represents data that can be changing in time, such as the inputs (i.e. sensors) and outputs

(i.e. motor drives) of the node controller. Process data is also stored in the object dictionary. However,

since SDO communication only allows access to one object dictionary index at a time, there can be a lot

of overhead for accessing continually changing data. In addition, the CANopen protocol has the

requirement that a node must be able to send its own data, without needing to be polled by the

CANopen master. Thus, a different method is used to transfer process data, using a communication

method called Process Data Objects (PDOs).

PDO communication can be described by the producer/consumer model. Process data can be

transmitted from one device (producer) to one another device (consumer) or to numerous other devices

(broadcasting). PDOs are transmitted in a non-confirmed mode. The producer sends a Transmit PDO

(TxPDO) with a specific identifier that corresponds to the identifier of the Receive PDO (RxPDO) of one

or more consumers.

neMESYS Firmware Specification 25

Abbildung 4.2: Object Dictionary Access

There are two types of PDOs: transfer PDOs (TPDOs) and receive PDOs (RPDOs). A TPDO is the data

coming from the node (produced) and a RPDO is the data coming to the node (consumed). In addition,

there are two types of parameters for a PDO: the configuration parameters and the mapping

parameters. The section of the object dictionary reserved for PDO configuration and mapping

information are indices 1400h-1BFFh.

IMPORTANT . PDO communication is not permitted in NMT state Pre-Operational.

Switch to NMT Operational state to enable PDO transmission.

4.5.2.1 PDO CONFIGURATION PARAMETERS

The configuration parameters specify the COB-ID, the transmission type, inhibit time (TPDO only) and

the event timer, which are explained in this section. There are different methods through which a PDO

transfer can be initiated. These methods include event driven, time driven, individual polling and

synchronized polling. The type of transmission is specified in the configuration parameters of the PDO.

In event driven transmission, the PDO transfer is initiated when the process data in it changes.

• In time driven transmission, the PDO transfer occurs at a fixed time interval.

• In event-driven transmission a PDO transfer is triggered by the occurrence of an object-specific

event or change of process data

• In individual polling, the PDO transfer is initiated using a mechanism called remote request,

which is not commonly used.

• In synchronized polling, the PDO transfer is initiated using a SYNC signal. The sync signal is

26 neMESYS Firmware Specification

Figure 5: Process Data Object (PDO)

frequently used as a global timer. For example, if the CANopen master sends out a SYNC

message, multiple nodes may be configured to see and respond to that SYNC. In this way, the

master is able to get a "snapshot" of multiple process objects at the same time.

4.5.2.2 PDO MAPPING PARAMETERS

The mapping parameters specify which object dictionary values are sent by a single PDO message. For

example, a single PDO message may contain data from object index 2001h, 2003h and 2005h.

4.5.3 Sync Object
The SYNC producer provides the synchronization signal for the SYNC consumer.

As the SYNC consumers receive the signal, they will commence carrying out their synchronous tasks. In

general, fixing of the transmission time of synchronous PDO messages coupled with the periodicity of

the SYNC Object’s transmission guarantees that sensors may arrange sampling of process variables and

that actuators may apply their actuation in a coordinated manner. The identifier of the SYNC Object is

available at index “1005h”.

neMESYS Firmware Specification 27

Figure 6: TPDO 1 Communication Parameters (0x1801h) and Mapping Parameters (0x1A01h)

Synchronous transmission of a PDO means that the transmission is fixed in time with respect to the

transmission of the SYNC Object. The synchronous PDO is transmitted within a given time window

“synchronous window length” with respect to the SYNC transmission and, at the most, once for every

period of the SYNC. The time period between SYNC objects is specified by the parameter

“communication cycle period”.

CANopen distinguishes the following transmission modes:

• synchronous transmission

• asynchronous transmission

Synchronous PDOs are transmitted within the synchronous window after the SYNC object. The priority

of synchronous PDOs is higher than the priority of asynchronous PDOs.

Asynchronous PDOs and SDOs can be transmitted at every time with respect to their priority. Hence,

they may also be transmitted within the synchronous window.

28 neMESYS Firmware Specification

Figure 4.3: Synchronization Object (SYNC)

Figure 7

Figure 8: Synchronous PDO

4.6 Network Management – NMT
In addition to providing services and protocols for the transmission of process data and the

configuration of devices, the operation of a system distributed over a network requires functions for the

command control of the communication state of the individual network nodes. As data transmission by

CANopen devices is in many cases event-controlled, continual monitoring of the communication ability

of the network nodes is also required. CANopen provides so-called "network management" services and

protocols for these tasks, namely:

• control of the communication state of network nodes and

• node monitoring.

4.6.1 NMT Services
The CANopen network management is node-oriented and follows a master/slave structure. It requires

one device in the network that fulfils the function of the NMT Master. The other nodes are NMT Slaves.

Network management provides the following functionality groups:

• Module Control Services for initialization of NMT Slaves that want to take part in the

distributed application.

• Error Control Services for supervision of nodes’ and network’s communication status.

• Configuration Control Services for up/downloading of configuration data from/to a network

module.

A NMT Slave represents that part of a node, which is responsible for the node’s NMT functionality. It is

uniquely identified by its module ID.

neMESYS Firmware Specification 29

Figure 9: Network management (NMT)

The CANopen NMT Slave devices implement a state machine that automatically brings every device to

“Pre-Operational” state, once powered and initialized.

The “Pre-Operational” state is primarily used for the configuration of CANopen devices. Therefore

exchange of process data (via PDOs) is not possible in this state. The entries of the device object

dictionaries can be accessed via "service data objects" (SDOs). By transmitting an SDO message, the

object dictionary of a certain device can be modified, e.g. with a configuration tool.

IMPORTANT . PDO communication is not permitted in Pre-Operational state. Switch

to Operational state to enable PDO transmission.

In addition to communication via SDO messages, emergency, synchronization, time stamp and of course

NMT control messages can also be transmitted or received in the Pre-operational state. By transmitting

a "Start-Remote-Node", a node switches to the "Operational" state.

In “Operational” state, PDO transfer is permitted. Furthermore, “Operational” can be used to achieve

certain application behavior. The behavior's definition is part of the device profile’s scope. In

“Operational”, all communication objects are active. Object Dictionary access via SDO is possible.

However, implementation aspects or the application state machine may require to switching off or to

30 neMESYS Firmware Specification

Figure 10: NMT slave states

read only certain application objects while being operational (e.g. an object may contain the application

program, which cannot be changed during execution).

By switching a device into “Stopped” state it will be forced to stop PDO and SDO communication.

Except for node guarding or heartbeat messages, a node cannot transmit or receive any other messages

in this state.

4.7 CANopen Error Handling – EMCY

4.7.1 Principle
Emergency objects are triggered by the occurrence of a CANopen device internal error situation and are

transmitted from an emergency producer on the CANopen device. They are assigned the highest

possible priority to ensure that they get access to the bus without latency. Emergency objects are

suitable for interrupt type error alerts. An emergency object is transmitted only once per 'error event'.

No further emergency objects will be transmitted as long as no new errors occur on a CANopen device.

Zero or more emergency consumers may receive the emergency object.

Simultaneously with transmission of the emergency message, the device writes the error code to [1003],

where the error history is stored. The error register is content of the OD entry [1001] with bit-wise

coding of the error cause

4.7.2 Emergency Message Frame
The device transmits emergency message frames over the CANopen network using COB-ID EMCY

(H1014). An emergency message consists of the error code with pre-defined error numbers and the

neMESYS Firmware Specification 31

Figure 11: Emergency service (EMCY)

actual state of the Error Register (H1001).

Byte 0 1 2 3 4 5 6 7

Description Error Code Error

Register

Manufacturer specific error code

Table 2: Emergency Message Frame

IMPORTANT . Emergency messages are only available for CAN bus communication

and not for serial RS232 communication.

32 neMESYS Firmware Specification

5 CANopen Serial Interface (CSI)

5.1 Overview
This section describes the cetoni CANopen Serial Interface (CSI). This is a serial protocol that enables

access to CANopen device object dictionaries via a RS232 serial interface. The CANopen Serial Interface

(CSI) supports an Industrial RS232 Protocol with CRC checksum for reliable RS232 connection of cetoni

devices to control systems in industrial or laboratory environments. For a high degree of reliability in an

electrically noisy environment, it features a checksum.

IMPORTANT . The protocol is a binary protocol with CRC checksum and handshaking.

So it is not possible to simply access device parameters via serial terminal program.

5.2 Physical Layer

5.2.1 Electrical Standard
The CSI communication protocol uses the RS232 standard for transmitting data over a three wires cable,

for the signals TxD, RxD and GND.

The RS232 standard can be used only for a point-to-point communication between a master and a

single device slave. The standard uses negative, bipolar logic in which a negative voltage signal

represents a logic ‘1’, and positive voltage represents a logic ‘0’. Voltages of –3V to –25V with respect to

signal ground (GND) are considered logic ‘1’, whereas voltages of +3V to 25V are considered logic ‘0’.

5.2.2 Medium
For the physical connection a 3 wire cable is required. It is recommended to install a shielded and

twisted pair cable in order to have a good performance even in an electrically noisy environment.

Depending on the bit rate used the cable length can range from 3 meters up to 15 meters. However we

do not recommend RS232 cables longer than 5 meters.

neMESYS Firmware Specification 33

6 Industrial RS232 Protocol with
CRC checksum

6.1 Introduction
The serial EIA RS232 communication protocol is used to transmit and receive data over the cetoni

device's RS232 serial port. Its principal task is to transmit data from a master (PC or any other central

processing unit) to a single slave. The protocol is defined or point-to-point communication based on the

EIA-RS232 standard.

The protocol can be used to implement the command set defined for cetoni devices. For a high degree

of reliability in an electrically noisy environment, it features a checksum.

6.2 Protocol and Flow Control

6.2.1 Sequence of sending commands
The cetoni CANopen devices always communicates as a slave. A frame is only sent as an answer to a

request. Some commands send an answer, other commands do not (observe respective descriptions to

determine command that send an answer packets). The master always must start the communication by

sending a packet structure.

Below described are the data flow while transmitting and receiving frame.

neMESYS Firmware Specification 35

Figure 12: RS232 Communication – Command Sequence

6.2.2 Sending a data frame

When sending a frame, you will need to wait for different acknowledgment.

• After sending the first frame byte (OpCode), you will need to wait for the device's “Ready

Acknowledge”.

• Once the character “O” (okay) is received, the slave is ready to receive further data.

• If the character “F” (failed) is received, the slave is not ready to send data and communication

must be stopped.

• After sending the checksum, you will need to wait for the “End Acknowledge”. The slave sends

either “O” (okay) or “F” (failed).

Figure 13: RS232 Communication – Sending a Data Frame to device

36 neMESYS Firmware Specification

6.2.3 Receiving a data frame

In response to some of the command frames, the slave device returns a response data frame to the

master. The data flow sequence is identical as for sending a data packet, only in the other direction. The

master must also send the two acknowledges to the slave.

• The value of the first field must always be 0x00, thus representing the operation code describ-

ing a response frame.

• After receiving the first byte, the master then must send the “Ready Acknowledge”.

• Send character “O” (okay) if you are ready to receive the rest of the frame.

• Send character “F” (failed) if you are not ready to receive the rest of the frame.

• If the device does not get an “O” within the specified timeout, the communication is reset.

Sending “F” does not reset the communication.

• After sending the “Ready Acknowledge” (“O”), the device sends the rest of the data frame. Then

the checksum must be calculated and compared with the one received. If the checksum is

correct, send acknowledge “O” to the device, otherwise send acknowledge “F”.

Figure 14: RS232 Communication – Receiving a response data frame from device

neMESYS Firmware Specification 37

6.3 Frame Structure

6.3.1 Overview
The data bytes are sequentially transmitted in frames. A frame composes of:

• a header

• a variably long data field and

• a 16-bit long cyclic redundancy check (CRC) for verification of data integrity

OpCode

(8-bit)

Len-1

(8-bit)

Data[0]

(16-bit)

... Data[Len-1]

(16-bit)

CRC

(16-bit)

Header Data Crc

Figure 15: RS232 Communication - Frame Structure

6.3.2 Header
The header consists of 2 bytes. The first field (OpCode) determines the type of data frame to be sent or

received. The next field (Len-1) contains the length of the data fields.

• OpCode - Operation command to be sent to the slave

• Len-1 - represents the number of words (16-bit value) in the data fields. It contains the number

of words minus one. The smallest value in this field is zero, which represents a data length of

one word. The data block must contain at least 1 word.

Examples:

1 word: Len-1 = 0

2 words: Len-1 = 1

256 words: Len-1 = 255

6.3.3 Data
The data field contains the parameters of the message. This data block must contain at least one word.

The low byte of the word is transmitted first.

• Data[i] - The parameter word of the command. The low byte is transmitted first.

38 neMESYS Firmware Specification

6.3.4 CRC
The 16-bit CRC checksum. The algorithm used is CRC-CCITT. The CRC calculation includes all bytes of

the frame. The data bytes must be calculated as a word. First you will need to shift in the high byte of

the data word. This is the opposite way you transmit the data word. The 16-bit generator polynomial

“x16+x12+x5+1” is used for the calculation.

Order of CRC calculation:

“OpCode”, “len-1”, “data[0]” high byte, “data[0]” low byte, …,

ZeroWord low byte = 0x00, ZeroWord high byte = 0x00

CRC - Checksum of the frame. The low byte is transmitted first.

6.4 Error Control

6.4.1 CRC Calculation
Packet M(x): WORD DataArray[n]

Generator Polynom G(x): 10001000000100001 (= x16+x12+x5+x0)

DataArray[0]: HighByte(OpCode) + LowByte(len-1);

DataArray[1]: data[0]

DataArray[2]: data[1]

…

DataArray[n-1]: 0x0000 (ZeroWord)

neMESYS Firmware Specification 39

Figure 16: RS232 Communication – CRC-CCIT Calculation

6.5 Transmission Byte Order
The unit of data memory in the device is a word (16-bit value). To send and receive a word (16-bit) over

the serial port of the slave device, the low byte will be transmitted first. Multiple byte data (word = 2

bytes, long words = 4 bytes) are transmitted starting with the less significant byte (LSB) first.

A word will be transmitted in this order: byte0 (LSB), byte1 (MSB).

A long word will be transmitted in this order: byte0 (LSB), byte1, byte2, byte3 (MSB).

6.6 Data Format
Data is transmitted in an asynchronous way, thus each data byte is transmitted individually with its own

start and stop bit. The format is

1 Start bit, 8 Data bits, No parity, 1 Stop bit (8N1)

Most serial communication chips (SCI, UART) can generate such data format.

6.7 Timeout Handling
The timeout is handled over a complete frame. Hence, the timeout is evaluated over the sent data

frame, the command processing procedure and the response data frame. For each frame (frames, data

40 neMESYS Firmware Specification

processing), the timer is reset and timeout handling will recommence.

neMESYS Firmware Specification 41

6.8 Slave (device) implementation state
machine

42 neMESYS Firmware Specification

6.9 Master implementation state machine

neMESYS Firmware Specification 43

6.10 Command Reference

6.10.1 Read Functions

6.10.1.1 READ OBJECT DICTIONARY ENTRY (4 DATA BYTES AND LESS)

Read an object value from the Object Dictionary of the device at the given Index and SubIndex.

READ OBJECT -REQUEST FRAME

OpCode 0x10

Len-1 1

Parameters WORD Index Index of Object

(Low) BYTE SubIndex SubIndex of Object

(High) BYTE NodId Node ID

The device responds with a data frame with 4 bytes of data.

READ OBJECT -RESPONSE FRAME

OpCode 0x00

Len-1 3

Parameters DWORD ErrorCode Error Code (see firmware spec.)

BYTE Data[4] Data Bytes read

44 neMESYS Firmware Specification

6.10.1.2 READ OBJECT DICTIONARY ENTRY (5 DATA BYTES AND MORE)

INITIATE SEGMENTED READ

Start reading an object value from the Object Dictionary at the given Index and SubIndex with a data

size greater than 4 bytes. Because the data does not fit into a single response frame, the transfer is

splitted into a number of segments. Use the command SegmentRead to read the data.

INITIATE SEGMENTED READ - REQUEST FRAME

OpCode 0x12

Len-1 1

Parameters WORD Index Index of Object

(Low) BYTE SubIndex SubIndex of Object

(High) BYTE NodId Node ID

The device responds with a response frame without any data.

INITIATE SEGMENTED READ - RESPONSE FRAME

OpCode 0x00

Len-1 1

Parameters DWORD ErrorCode Error Code (see firmware spec.)

neMESYS Firmware Specification 45

SEGMENT READ

Read a data segment of the object initiated with the command InitiateSegmentedRead.

READ SEGMENT - REQUEST FRAME

OpCode 0x14

Len-1 0

Parameters (Low) Byte ControlByte [Bit 0...5] Not used

[Bit 6] Toggle Bit

[Bit 7] Not used

(High) BYTE Dummy Byte without meaning

The device responds with a data segment of up to 63 bytes of data. The segmented respons frame

contains a control byte that indicates the number of data bytes and if there are more segments to read.

READ SEGMENT - RESPONSE FRAME

OpCode 0x00

Len-1 2...33

Parameters DWORD ErrorCode Error Code (see firmware spec.)

(Low) BYTE ControlByte [Bit 0...5] Number of data bytes

[Bit 6] Toggle Bit

[Bit 7] 1 = More segments to read

BYTE Data[0...63] Data Bytes read

46 neMESYS Firmware Specification

6.10.2 Write Functions

6.10.2.1 WRITE OBJECT DICTIONARY ENTRY (4 DATA BYTES AND LESS)

Write an object value to the Object Dictionary at the given Index and SubIndex.

WRITE OBJECT - REQUEST FRAME

OpCode 0x11

Len-1 3

Parameters WORD Index Index of Object

(Low) BYTE SubIndex SubIndex of Object

(High) BYTE NodId Node ID

BYTE Data[4] Data Bytes to write

The device responds with a response frame without any data.

WRITE OBJECT - RESPONSE FRAME

OpCode 0x00

Len-1 1

Parameters DWORD ErrorCode Error Code (see firmware spec.)

neMESYS Firmware Specification 47

6.10.2.2 WRITE OBJECT DICTIONARY ENTRY (5 DATA BYTES AND MORE)

INITIATE SEGMENTED WRITE

Start writing an object value to the Object Dictionary at the given Index and SubIndex with a data size

of more than 5 bytes. The transfer is splitted into segments and initiated with this

InitiateSegmentedWrite frame. Use the command SegmentWrite to write the data.

INITIATE SEGMENTED WRITE - REQUEST FRAME

OpCode 0x13

Len-1 3

Parameters WORD Index Index of Object

(Low) BYTE SubIndex SubIndex of Object

(High) BYTE NodId Node ID

DWORD ObjectLength Total number of bytes to write.

The device acknowledges the start of the segmented transfer with the following response frame

INITIATE SEGMENTED WRITE - RESPONSE FRAME

OpCode 0x00

Len-1 1

Parameters DWORD ErrorCode Error Code (see firmware spec.)

48 neMESYS Firmware Specification

SEGMENT WRITE

Write a data segment to the object initiated with the command InitiateSegmentedWrite.

WRITE SEGMENT - REQUEST FRAME

OpCode 0x15

Len-1 0...31

Parameters (Low) Byte ControlByte [Bit 0...5] Number of data bytes

[Bit 6] Toggle Bit

[Bit 7] Not used

BYTE Data[0...63] Data bytes to write

The device acknowledges the segment with the following response frame.

WRITE SEGMENT - RESPONSE FRAME

OpCode 0x00

Len-1 2

Parameters DWORD ErrorCode Error Code (see firmware spec.)

(Low) BYTE ControlByte [Bit 0...5] Number of data bytes

[Bit 6] Toggle Bit

[Bit 7] Not used

(High) BYTE Dummy Byte without meaning

neMESYS Firmware Specification 49

6.11 Example Frames

6.11.1 Reading Object 0x1000 – Device Type
Index Sub Index Name Type Access Value

0x1000 0x00 Device Type UInt32 RO 0x000200192

The following example shows, how to read the device type object. The device type object can be read via

object dictionary index 0x1000 and sub-index 0. In the following example the object is read from a

neMESYS pump and the value returned by the device is 0x00020192.

r/w Data Comment

w 10 First we write 0x10 to indicate a data read

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

w 01 00 10 00 02 10 CD Now we send the read request frame with all required data fields: Number of Words without

CRC – 1, Object Index 0x1000 (little endian), Sub Index 0, Node ID 2, CRC Checksum

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

r 00 Now we wait for the response. 0x00 indicates the start of the response

w 4F We acknowledge the reception of the response with OK = 0x4F

r 03 00 00 00 00 92 01

02 00 EB 6D

The device sends a read response frame: Number of Words without CRC – 1, Error Code,

Data Bytes read little Endian: 0x00020192, CRC Checksum

w 4F We calculate the checksum and acknowledge the reception of the response with OK (0x4F) if

checksum is ok.

6.11.1.1 CALCULATING THE CRC CHECKSUM FOR THE READ REQUEST FRAME

Before you calculate the CRC checksum for the read request frame, you should have the following array

of data words:

DataArray[0] 0x1001 HighByte(OpCode 10 - read) + LowByte(len-1);

DataArray[1] 0x1000 Object Index 0x1000

DataArray[2] 0x0200 Node ID 2, Sub Index 0

DataArray[3] 0x0000 0x0000 – Placeholder for CRC

Now you can calculate the checksum for the 4 words and insert the result 0xCD10 into the DataArray[3]

field in little endian order so that you get the following frame: 01 00 10 00 02 10 CD

50 neMESYS Firmware Specification

6.11.1.2 VERIFYING THE CRC CHECKSUM OF THE READ RESPONSE FRAME

If you have received the read response frame 03 00 00 00 00 92 01 02 00 EB 6D, then you should have

the following array of data words for CRC calculation:

DataArray[0] 0x0003 HighByte(OpCode 00 - response) + LowByte(len-1);

DataArray[1] 0x0000 Error code low word

DataArray[2] 0x0000 Error code high word

DataArray[3] 0x0192 Data low word

DataArray[4] 0x0002 Data high word

DataArray[5] 0x6DEB CRC checksum

Now you can calculate the checksum for the 6 words. The result of the CRC calculation should be 0.

Only if the result is 0, you have received a valid data frame.

neMESYS Firmware Specification 51

6.11.2 Writing Object 0x1017 – Producer Heartbeat Time
Index Sub Index Name Type Access Value

0x1017 0x00 Producer Hearbeat Time UInt16 RW 1000

The following example shows, how to write a producer heartbeat time of 1000 milliseconds into the

object 0x1017 sub-index 0.

r/w Data Comment

w 11 First we write 0x11 to indicate a data write

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

w 03 17 10 00 02 E8 03

00 00 10 DC

Now we send the data frame with all required data fields: Number of Words without CRC – 1,

Object Index 0x1017 (little endian), Sub Index 0, Node ID 2, the value 1000 (hex 0x3E8) little

endian, CRC Checksum

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

r 00 Now we wait for the response. 0x00 indicates the start of the response

w 4F We acknowledge the reception of the response with OK = 0x4F

r 01 00 00 00 00 51 AA The device sends a write response frame: Number of Words without CRC – 1, Error Code,

CRC Checksum

w 4F We calculate the checksum and acknowledge the reception of the response with OK (0x4F) if

checksum is ok.

52 neMESYS Firmware Specification

6.11.3 Reading Object 0x6041 – Statusword of a nemesys
syringe pump

Index Sub Index Name Type Access Value

0x6041 0x00 Statusword UInt16 RO 0x508

The following example shows, how to read the statusword of a nemesys syringe pump. The statusword

can be read via object dictionary index 0x6041 and sub-index 0. In the following example the value

returned by the device is 0x508. The device has the node ID 2.

r/w Data Comment

w 10 First we write 0x10 to indicate a data read

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

w 01 41 60 00 02 F8 A5 Now we send the data frame with all required data fields: Number of Words without CRC – 1,

Object Index 0x6041 (little endian), Sub Index 0, Node ID 2, CRC Checksum

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

r 00 Now we wait for the response. 0x00 indicates the start of the response

w 4F We acknowledge the reception of the response with OK = 0x4F

r 03 00 00 00 00 08 05

00 00 A0 38

The device sends a read response frame: Number of Words without CRC – 1, Error Code,

Data Bytes read little Endian: 0x508, CRC Checksum

w 4F We calculate the checksum and acknowledge the reception of the response with OK (0x4F) if

checksum is ok.

neMESYS Firmware Specification 53

6.11.4 Writing Object 0x6040 – Controlword of nemesys
syringe pump

Index Sub Index Name Type Access Value

0x6040 0x00 Controlword UInt16 RW 0x80

The following example shows how to write the controlword of a nemesys syringe pump. The

controlword can be written via object dictionary index 0x6040 and sub-index 0. In the following example

the value written to the device is 0x80. The device has the node ID 2.

r/w Data Comment

w 11 First we write 0x11 to indicate a data write

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

w 03 40 60 00 02 80 00

00 00 D9 36

Now we send the data frame with all required data fields: Number of Words without CRC – 1,

Object Index 0x6040 (little endian), Sub Index 0, Node ID 2, the value 0x80 little endian, CRC

Checksum

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

r 00 Now we wait for the response. 0x00 indicates the start of the response

w 4F We acknowledge the reception of the response with OK = 0x4F

r 01 00 00 00 00 51 AA The device sends a write response frame: Number of Words without CRC – 1, Error Code, CRC

Checksum

w 4F We calculate the checksum and acknowledge the reception of the response with OK (0x4F) if

checksum is ok.

54 neMESYS Firmware Specification

6.11.5 Writing Object 0x607A – Target Position of nemesys
syringe pump

Index Sub Index Name Type Access Value

0x607A 0x00 Target Position Int32 RW 0x80

The following example shows how to write the target position of a nemesys syringe pump. The target

position can be written via object dictionary index 0x607A and sub-index 0. In the following example

the value written to the device is 280000 (0x445C0). The device has the node ID 2.

r/w Data Comment

w 11 First we write 0x11 to indicate a data write

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

w 03 7A 60 00 02 C0 45

04 00 EA 13

Now we send the data frame with all required data fields: Number of Words without CRC – 1,

Object Index 0x607A (little endian), Sub Index 0, Node ID 2, the value 280000 (0x445C0)

little endian, CRC Checksum

r 4F Then we wait for ‘O’ that indicates the OK. The ASCII value for ‘O’ is 0x4F

r 00 Now we wait for the response. 0x00 indicates the start of the response

w 4F We acknowledge the reception of the response with OK = 0x4F

r 01 00 00 00 00 51 AA The device sends a write response frame: Number of Words without CRC – 1, Error Code,

CRC Checksum

w 4F We calculate the checksum and acknowledge the reception of the response with OK (0x4F) if

checksum is ok.

neMESYS Firmware Specification 55

7 Pump Control

7.1 Drive Control Overview
Internally the pump uses a EPOS CANopen DS402 servo drive to move the pusher and the syringe

piston. A detailed description of the EPOS CANopen drives is provided with the document EPOS2-

Firmware-Specification-En.pdf. You can control the drive by reading and writing the object dictionary

entries of the device. The controller has an extensive object directory (see section 8 Object Dictionary in

the EPOS firmware specification), but only a few entries are relevant for the control of the neMESYS

pump. The following table list all object dictionary entries that are required for pump control.

Index Name Data Type Access

0x1001 Error Register UNSIGNED8 RO

0x1003 Error History (Predefined Error Field) ARRAY RO

0x2003 RS232 Frame Timeout UNSIGNED16 RW

0x200C Custom persistent memory RECORD RW

0x2028 Velocity Actual Value Averaged INTEGER32 RO

0x2078 Digital Output Functionalities RECORD RW

0x207C Analog Inputs ARRAY RO

0x2081 Home Position UNSIGNED32 RW

0x2210 Position Sensor Configuration RECORD RW

0x6040 Control Word UNSIGNED16 RW

0x6041 Status Word UNSIGNED16 RO

0x6060 Modes of Operation INTEGER8 RW

0x6061 Modes of Operation Display INTEGER8 RO

0x6064 Position Actual Value INTEGER32 RO

0x607A Target Position INTEGER32 RW

0x607C Home Offset INTEGER32 RW

0x6081 Profile Velocity UNSIGNED32 RW

0x608B Velocity Notation Index INTEGER8 RW

0x6098 Homing Method INTEGER8 RW

0x6099 Homing Speeds ARRAY RW

neMESYS Firmware Specification 57

EPOS2-Firmware-Specification-En.pdf
EPOS2-Firmware-Specification-En.pdf

7.2 Operating Modes
The EPOS CANopen drive supports a number of operating modes (see section 5 Operating Modes in the

EPOS2-Firmware-Specification-En.pdf). For pump control, only two of these operation modes are

required.

• MODE 6 – HOMING MODE: This mode is required for reference move of the pusher and to

initialize the internal position monitioring

• MODE 1 – PROFILE POSITION: this mode is required for normal pumps tasks like

aspirating or dispensing

To activate a mode, you simply need to write the mode index (e.g. 1 for Profile Position) into the object

dictionary entry 0x6060 Modes Of Operation. To read out the active operation mode, you simple need to

read the current value of 0x6061 Modes Of Operation Display.

Index Subindex Object Description

0x6060 0 Modes of Operation Write into this object to switch operating mode

0x6061 0 Modes of Operation Display Read current operating mode from this object

7.3 Translation of volume / flow units

7.3.1 Introduction
Whenever you call a function that requires a volume (position) value or a flow (speed) value, the value is

given in device internal units like increments for position values and mrpm (millirevolutions per minute)

for velocity values. These technical units are not well suited for dosing tasks (for volumes and flow rates)

and need to be translated by the application to implement pump control.

This translation depends on several parameters like mechanical configuration of the single dosing units

(gear) and it also depends on the syringes used for dosing. The following two sections will show you,

how you can convert the internal device units for device control into units for volume and flow values.

7.3.2 Reading out device parameters

7.3.2.1 OVERVIEW

For the calculation of flow rates and volumes the following device parameters are required:

58 neMESYS Firmware Specification

EPOS2-Firmware-Specification-En.pdf

Index Subindex Object Description

0x608B 0 Velocity Notation Index Read velocity notation from this object

0x2210 0 Encoder Resolution Read the encoder resolution from this object

0x200C 1 Custom Persistent memory 1 Gear Factor Numerator

0x200C 4 Custom Persistent memory 4 Gear Factor Denominator

7.3.2.2 VELOCITY NOTATION INDEX

The velocity notation index defines the unit prefix that precedes the velocity base unit rpm (revolutions

per meter) and thus defines the internal velocity unit of the drive device. To get the velocity notation

index you need to read the object dictionary entry 0x608B Velocity Notation Index. All velocity values are

given and returned in internal velocity units. The following values are possible:

Value Velocity unit

0 rpm (revolutions per minute)

-1 drpm (decirevolutions per minute)

-2 crpm (centirevolutions per minute)

-3 mrpm (millirevolutions per minute)

The default unit is mrpm – millirevolutions per minute.

7.3.2.3 ENCODER RESOLUTION

The encoder resolution defines the number of pulses per motor revolution – increments per motor

revolution. All internal position values are given in increments. To read out the encoder pulse number

you need to read the object dictionary entry 0x2210, Subindex 1 – Pulse Number Encoder 1. Because the

encoder returns a quadrature signal, the encoder pulse number needs to get multiplied with 4 to get the

encoder resolution:

Encoder Resolution = Pulse Number Encoder x 4

If the Pulse Number of the encoder is 512, then the resulting encoder resolution is 512 x 4 = 2048.

7.3.2.4 GEAR FACTOR

The gear factor defines the factor for the conversion of motor revolutions into the moved pusher

distance in mm. The gear factor consists of a gear nominator and a gear denominator. You need to read

the following two object dictionary entries, to get the gear factor.

neMESYS Firmware Specification 59

Parameter Object Subindex

Gear Factor Numerator 0x200C Custom Persistent memory 1

Gear Factor Denominator 0x200C Custom Persistent memory 4

From these to values, you can calculate the gear factor:

Gear Factor (rev/mm)= Gear Nominator / Gear Denominator.

7.3.3 Position value conversion

7.3.3.1 CALCULATING THE POSITION CONVERSION FACTOR

With the values read from the device, you can calculate a position conversion factor for conversion

between internal device units (increments) and millimetres. First we can convert the increment value

into motor revolutions with the help of the encoder resolution value:

Motor revolutions =Increments / Encoder Resolution

Then you have to translate these motor rotations into the distance of the pusher with the help of the

gear factor:

Distance in mm = Motor revolutions / Gear factor

So the final calculation is:

mm= Increments
Encoder Resolution(inc /rev)×Gear factor (rev /mm)

From this formula we can extract the position conversion factor:

Position conversion factor (inc/mm) = Encoder Resolution (inc/rev) x Gear Factor (rev/mm)

7.3.3.2 CONVERSION OF POSITION VALUES

To convert from increments into a distance in mm, you just need to de divide the increments value by

the position conversion factor:

mm = Increments / Position conversion factor

To convert a distance in mm into an increments value, you just need to multiply the distance with the

conversion factor:

Increments = mm * Position conversion factor

60 neMESYS Firmware Specification

7.3.3.3 EXAMPLE POSITION CONVERSION

The following example shows how to convert a distance in millimetres into internal position units:.

Encoder resolution: 2048 inc/rev

Gear factor: 14,0625 rev/mm

Position conversion factor 2048 inc/rev * 14,0625 rev/mm = 28.800 inc/mm

Distance in mm: 10 mm

Position value in increments: 10 mm * 28.800 inc/mm = 288.000 inc

7.3.4 Velocity value conversion

7.3.4.1 CALCULATING THE VELOCITY CONVERSION FACTOR

With the values read from the device, you can calculate a velocity conversion factor for conversion

between internal device units and millimetres/second (mm/s). First we convert the internal velocity unit

into into revolutions/minute.

rev /min=device velocity×10velocity notation index

Then we can convert the revolutions/minute into revolutions per second by dividing by 60.

rev/s = rev/min / 60 s/min

Finally we can calculate the velocity in millimetres/second with the help of the gear factor:

mm/ s= rev / s
Gear factor (rev /mm)

So the final calculations is:

mm/ s=device velocity×10
velocitynotation index

60 s /min×Gear factor (rev /mm)

From this formula we can extract the velocity conversion factor:

Velocity conversion factor=
60 s /min×Gear factor (rev /mm)

10velocity notation index

7.3.4.2 CONVERSION OF VELOCITY VALUES

To convert from device velocity into a velocity in mm/s, you just need to divide device velocity values by

the velocity conversion factor:

neMESYS Firmware Specification 61

mm/s = Device velocity / Velocity conversion factor

To convert a velocity in mm/s into a device velocity value, you just need to multiply the velocity with the

conversion factor:

Device velocity = mm/s x Velocity conversion factor

7.3.4.3 EXAMPLE VELOCITY CONVERSIONS

Velocity notation index: -3 (millirevolutions per minute)

Gear factor: 14,0625 rev/mm

Velocity conversion factor: 60s/min x 14,0625 rev/mm / 10-3 = 843.750

Velocity value: 2mm/s

Device velocity: 2 mm/s * 843.750 = 1.687.500 mrev/min

7.3.5 Volume value conversions

7.3.5.1 CALCULATION

Section Position value conversion shows, how to convert internal device position into millimetres. This

section shows, how to convert a position value in millimetres into a volume in millilitres. To convert a

pusher movement in millimetres into a volume value in millilitres, you need to know the inner diameter

of the syringe mounted on the device. With the help of the inner syringe diameter and a length in

millimetres, you can calculate the cylinder volume in mm3.

Volume(mm3)=π
4
d (mm)2⋅length(mm)

One millilitre is equal to 1000 mm3. So you can calculate millilitres directly with the following formula:

Volume(ml)=π
4
d (mm)2⋅length (mm)/1000

From a given value in millilitres you can calculate the pusher distance with the following formula:

mm=
Volume (ml)⋅1000⋅4

πd2

With then help of the Position conversion factor you can now convert millimetres into internal device

position units (increments).

62 neMESYS Firmware Specification

7.3.5.2 EXAMPLE VOLUME CONVERSION

The following example shows, how to convert a volume value in millilitres into internal device position

units:

Volume: 10 ml

Inner syringe diameter: 14,5673 mm

Distance in mm: 10 ml * 1000 mm3/ml * 4 / π / (14,5673 mm)2 = 60 mm

Position conversion factor: 28.800 inc/mm

Position value in increments: 60 mm * 28.800 inc/mm = 1.728.000 inc

7.3.6 Flow value conversions

7.3.6.1 CALCULATION

Section Velocity value conversion shows, how to convert internal device velocity into

millimetres/second (mm/s) and vice versa. This section shows, how to convert a velocity value in

millimetres/second (mm/s) into a flow value in millilitres/second (ml/s). To convert a pusher movement

in millimetres/second into a flow value in millilitres/second, you need to know the inner diameter of the

syringe mounted on the device. With the help of the inner syringe diameter and a length in millimetres,

you can calculate the cylinder volume in mm3.

Volume(mm3)=π
4
d (mm)2⋅length(mm)

One millilitre is equal to 1000 mm3. So you can calculate millilitres directly with the following formula:

Volume(ml)=π
4
d (mm)2⋅length (mm)/1000

Now we can easily create the formula for conversion of velocity values in mm/s into flow values in ml/s

Flow(ml/s)=Volume (ml)
s

=πd (mm)2

4×1000
×Velocity(mm /s)

and the formula for conversion of flow values in ml/s into velocity values in mm/s

Velocity (mm /s)=
Flow(ml/ s)⋅1000⋅4

π d(mm)2

With the help of the Velocity conversion factor you can now convert mm/s into internal device velocity.

neMESYS Firmware Specification 63

7.3.6.2 EXAMPLE FLOW CONVERSION

The following example shows, how to convert a flow value in millilitres/second (ml/s) into internal

device velocity units:

Flow: 1,054814 ml/s

Inner syringe diameter: 14,5673 mm

Velocity in mm/s: 1,054814 ml/s * 1000 mm3/ml * 4 / π / (14,5673 mm)2 = 6,328 mm/s

Velocity conversion factor: 843.750

Device velocity: 6,328 mm/s * 843.750 = 5.339.250 mrev/min

7.4 Enabling drive
7.4.1.1 EXAMPLE FLOW CONVERSION

Before you can move the pusher, you need to set the pump drive into Operation Enabled state.

Operation Enabled means, the drive function is enabled and power is applied to the motor. Right after

power on or after a reset, the drive is not in Operation Enabled state. To set the drive into Operation

Enabled state, you need to control the internal drive state machine via the objects 0x6040 Controlword

and 0x6041 Statusword.

For a detailed description how to control the drive state machine and how to set the drive into

Operation Enabled state, please read the section 3.2 Device Control in the EPOS2-Firmware-

Specification-En.pdf document.

Index Subindex Object Description

0x6040 0 Controlword Write to this object to control the internal device state machine

0x6041 0 Statusword Read current device state and status information from this object

7.5 Initializing position counter (Homing)

7.5.1 Overview
The neMESYS drive units use a relative encoder for position tracking and supervision. “Relative” means,

that all position information will be lost, if drive is powered of. Right after power on, the internal position

counter is always zero no matter where the pusher is located at the moment. To properly initialize the

internal position counter you must either perform a homing move, or load a previously saved position

value. The following two sections will show you, how to do this.

64 neMESYS Firmware Specification

EPOS2-Firmware-Specification-En.pdf
EPOS2-Firmware-Specification-En.pdf

7.5.2 Homing move

7.5.2.1 ACTIVATING HOMING MODE

To initialize the internal position counter, you can execute a homing move. That means, the pusher will

move to a known position to initialize its internal counter. A known position is one of the two limit

switches:

• the positive limit switch – the position where the syringe is completely empty

• and the negative limit switch – the position where the is completely filled

Before you can start a homing move, you need to activate the homing mode by writing the value 6 into

object 0x6060 Modes of Operation – see section Operating Modes.

The following objects are required for homing mode:

Index Subindex Object Description

0x6098 0 Homing Method

0x6099 1 Speed for switch search The homing speed for searching the limit switch

0x6099 2 Speed for zero search The homing speed for searching the zero position

0x607C 1 Home Offset The distance the device moves away from the limit switch

For a detailed description of the homing mode, read the section 5 .4 Homing Mode in the EPOS2-

Firmware-Specification-En.pdf document.

7.5.2.2 SETTING HOMING METHOD

The drive supports the following two homing methods when executing a homing move:

neMESYS Firmware Specification 65

Positive
Limit

Switch

Negative
Limit
Switch

Home
Position 0

Min. Position
(z.B. -1.700.200)

Home Offset
Travel range

Positive direction = dispensing
(target position > 0)

Negative direction = aspirating
(target position < 0)

Axis length

EPOS2-Firmware-Specification-En.pdf
EPOS2-Firmware-Specification-En.pdf

Value Method

1 Negative Limit Switch

2 Positive Limit Switch

The default homing method is 2 – Positive Limit Switch. The positive limit switch is the limit switch

where the syringe is completely empty. To set the homing method, simply write the homing method into

object 0x6098 Homing Method.

When the drive performs a homing move, it does the following steps:

• the initial direction of the movement is to the limit switch if the limit switch is inactive

• the axis moves with speed for switch search (0x6099 Speed for switch search) into the limit

switch – until the switch becomes active

• now the axis moves witch speed for zero search (0x6099 Speed for zero search) away from the

limit switch, to the edge of the switch until it becomes inactive

• Now, the axis moves the 0x607C Home Offset. This point will be used as reference for all further

moves and is set to Home Position.

HINT . The default homing method used in neMESYS UserInterface software is method

2 – Positive Limit Switch.

7.5.2.3 SETTING HOMING SPEEDS

You can set the homing speed by writing to the following two object dictionary entries.

Index Subindex Object Description

0x6099 1 Speed for switch search The homing speed for searching the limit switch

0x6099 2 Speed for zero search The homing speed for searching the zero position

HINT . You do not need to change these speeds. If you do not write to these entries, the

homing move will be performed with the default homing speeds.

7.5.2.4 SETTING HOME OFFSET

The home offset is the distance from the limit switch edge to the real zero position of the device. That

66 neMESYS Firmware Specification

means, the device always moves the home offset from the limit switch edge. The home offset ensures,

that there will be a small distance between the zero position and the limit switch. This ensures, that the

drive does not activate the limit switch, when it moves to the zero. To change the home offset, write to

the following object dictionary entry:

Index Subindex Object Description

0x607C 0 Home Offset The distance the device moves away from the limit switch

HINT . You do not need to change the home offset. If you do not write to this entry, the

homing move will be performed with the default homing offset configured by cetoni.

7.5.2.5 STARTING HOMING MOVE

You can start the homing move by writing to the Controlword. For a detailed description of the homing

mode specific Controlword and Statusword, please read the section 5.4 Homing Mode in the EPOS2-

Firmware-Specification-En.pdf document.

7.5.3 Restoring position counter

7.5.3.1 OVERVIEW

To avoid a homing move each time you turn on your pump device, you can restore a previously saved

position counter value. The following sections show you, how to save the position counter and how to

restore it.

7.5.3.2 SAVE POSITION COUNTER

To save the position counter, you just need to read the 0x6064 Position Actual Value object, and store its

value persistently into a file or any other persistent memory. You need to do this, each time before you

turn off your device.

Index Subindex Object Description

0x6064 0 Position Actual Value The current position value in increments

7.5.3.3 RESTORING POSITION COUNTER

To restore the position counter you need to perform the following steps.

(1) First you need to activate the homing mode, by writing the value 6 (homing mode) into object

0x6060 Modes of Operation (see section Activating Homing Mode).

neMESYS Firmware Specification 67

EPOS2-Firmware-Specification-En.pdf
EPOS2-Firmware-Specification-En.pdf

(2) Then you need to set the homing method 35 (Actual Position) by writing into object 0x6098

Homing Method.

(3) Then you can load you previously saved position counter value from file and write it into object

0x2081 Home Position.

(4) Now you need to enable the drive by writing to the object 0x6040 Controlword (see section

Enabling drive)

(5) Finally you can start the homing by setting the Homing Start bit in object 0x6040 Controlword

(see 5.4 Homing Mode in the EPOS2-Firmware-Specification-En.pdf document)

The following object are used for restoring the position counter value:

Index Subindex Object Description

0x6098 0 Homing Method Method 35 – Actual Position

0x2081 0 Home Position The position counter value to restore

0x6040 0 Controlword To start the homing

68 neMESYS Firmware Specification

EPOS2-Firmware-Specification-En.pdf

7.6 Dosing

7.6.1 Introduction
Normally all dosing tasks are performed in Profile Position Mode. That means for each dosing task you

need to set the volume, the flow rate and you need to start/stop the pump. The following picture shows

the device hardware:

The physical axis length is the distance between the positive and negative limit switch. During normal

dosing operations, the pusher should not reach the limit switches. Therefore the real travel range is

limited by two offsets: the Home Offset on the Positive Limit Switch side and a second offset on the

Negative Limit Switch side.

7.6.2 Reading device configuration

7.6.2.1 OVERVIEW

The object 0x200C Custom Persistent Memory contains additional information about the device

configuration.

Index Subindex Object Description

0x200C 2 Custom Persistent memory 2 Axis length (distance between negative and positive limit switch)

0x200C 3 Custom Persistent memory 3 Axis configuration (pump type, valve...)

7.6.2.2 CALCULATING THE TRAVEL RANGE

To calculate the travel range, you first need to read object 0x200C Subindex 2 Axis Length to get the

neMESYS Firmware Specification 69

Positive
Limit

Switch

Negative
Limit
Switch

Home
Position 0

Min. Position
(z.B. -1.700.200)

Home Offset
Travel range

Positive direction = dispensing
(target position > 0)

Negative direction = aspirating
(target position < 0)

Axis length

physical axis length between positive and negative limit switch. Now you can read the object 0x607C

Home Offset to get the offset from the zero position to the positive limit switch. Because the offset is

valid for both limit switches, you can calculate the travel range with the following formula:

Travel range = Axis Length – 2 x Home Offset

Now you can calculate the minimum and maximum position values, to limit the movement of the

pusher. The position counter value increases if the drive moves in positive direction towards the positive

limit switch and decreases if it moves in negative direction towards the negative limit switch. Therefore

the two position limits are:

Maximum position = 0

Minimum position =0 – Travel range

7.6.2.3 READING AXIS CONFIGURATION

To get additional information about the axis configuration, you can read object 0x200C Subindex 3 Axis

Configuration. The object contains a bitfield with additional information about various axis configuration

parameters.

32 13 12 10 9 7 6 4 3 1 0

reserved Product Type reserved reserved Axis Valve inst.

MSB LSB

Field Value Description

Product Type 0 Low Pressure Module

1 High Pressure Module

2 Mid Pressure Module

3 XL Module

4 2XL Module

Axis 0 Single Moduel

1 Left axis of Double Module

2 Right axis of Double Module

3 Starter Module

Valve inst. 0 No valve installed

1 Valve installed

7.6.3 Starting dosage
To start a dosage you need to access the following objects:

70 neMESYS Firmware Specification

Index Subindex Object Description

0x6040 0 Controlword Write to this object to start / stop dosage

0x6041 0 Statusword Read current device state and status information from this object

0x607A 0 Target Position Defines the volume for the next dosage

0x6081 0 Profile Velocity Defines the flow rate for the next dosage

The pump supports absolute and relative dosing. A relative movement aspirates or delivers a certain

volume. The position value that you write into object 0x607A Target Position is relative to the current

position. Write a negative position value to aspirate and a positive position value to displense a certain

amount of fluid. After the movement, the syringe content is increased respectively decreased, by the

volume, just as a bank account has its balance increased or decreased by a credit or a debit. There is a

fixed relationship between the position of the piston and the content in the syringe.

An absolute movement moves the piston of the syringe so that the syringe content reaches the

specified value. The position value that you write into object 0x607A Target Position is an absolute value

in the travel range from Minimum Position – Maximum Position. The actual movement is a delivering or

an aspiration as required to fulfil this purpose, or even no movement at all if the content is already equal

to the specified volume.

To start dosage, you need to perform the following steps:

(1) Enable the drive if it is not enabled yet according to the description in section Enabling drive.

(2) Convert the volume and flow values into position and velocity values according to section

Translation of volume / flow units.

(3) Write the position value into object 0x607A Target Position.

(4) Write the velocity value into object 0x6081 Profile Velocity.

(5) Start the dosage by writing to the object 0x6040 Controlword. Set the Abs/rel bit in the

Controlword to select absolute or relative dosing.

Read the section 5.3 Profile Position Mode in EPOS2-Firmware-Specification-En.pdf document for a

detailed description of the Controlword bits and how to start / stop positioning.

HINT . You only need to write Target Position and Profile Velocity objects, if you want to

change the values. If you would like to perform multiple dosing tasks with the same

volume or the same flow rate, then you only need to trigger the Controlword.

neMESYS Firmware Specification 71

EPOS2-Firmware-Specification-En.pdf

7.6.4 Stopping dosage
To stop a running dosage set the Halt bit in the Controlword.

7.7 Valve Switching
If there is a valve mounted on the device or if there is an external valve connected to the neMESYS I/O

interface, you can easily switch the valve by writing to the digital outputs.

Index Subindex Object Description

0x2078 1 Digital Output States Read / write the state of all digital outputs

The valve is connected to the digital outputs General Purpose C and General Purpose D.

Bit Nemesys I/O Interface EPOS Output Name

13 Digital output 1 General Purpose Out C

12 Digital output 2 General Purpose Out D

15 Digital output 3 General Purpose Out A

7.7.1 Switching internal Valve (Nemesys Low Pressure only)
The valves mounted on the pumps are 2/3-way digital valves. These valves have two positions: an OFF

position (coil power off) and an ON position (coil power on). To avoid warming of the valve, and of the

fluid that flows through the valve, the valve circuit supports a third state, in which the current coil

voltage is lowered. The following logic table shows the valve states and the I/Os.

General Purpose C General Purpose D Valve State Valve LED

0 0 off off

0 1 on (voltage lowered) on (dimmed)

1 0 off off

1 1 on on

To switch the valve into off state, simply set both outputs to 0. To switch the valve to on state, set both

outputs to 1 to get the maximum switching voltage. After one second set General Purpose C to 0 to

lower the coil voltage and to prevent coil and valve warming.

72 neMESYS Firmware Specification

7.7.2 Switching external Valve connected to I/O interface
The different valves have a different number of switching positions. Depending on the valve type, you

need to set the following digital outputs:

Valve Type Valve Position Dig.

Out 1

Dig.

Out 2

Dig.

Out 3

Bitmask (Bits 12, 13 and 15)

3-2 Way Valve (first Valve) Port 1 - 0 - 0x00000000

Port 2 - 1 - 0x00001000

3-2 Way Valve (second Valve) Port 1 - - 0 0x00000000

Port 2 - - 1 0x80000000

3-4 Way Contiflow Valve Closed 0 0 - 0x00000000

Port 1 1 0 - 0x00001000

Port 2 0 1 - 0x00002000

Both ports open 1 1 - 0x00003000

3-3 Way Contiflow Ball Valve Closed 0 0 - 0x00000000

Port 1 1 0 - 0x00001000

Port 2 0 1 - 0x00002000

IMPORTANT . If you write the digital outputs, ensure that you only modify the bits 12,

13 and 15 that are relevant for valve switching. That means you either need to read the

value before you change bits or you need to keep an internal shadow register.

7.8 Reading Pressure Sensor / Analog Inputs
The nemesys syringe pumps have two analog inputs. Pressure sensors are normally connected to the

first analog input. To read the analog input values you only have to read the two relevant object

directory entries:

Index Subindex Object Description

0x207C 1 Analog Input 1 The voltage measured at analog input 1 [mV].

0x207C 2 Analog Input 2 The voltage measured at analog input 2 [mV].

The returned value is the measured voltage in mV in the range from 0 – 5000 mV. If there is a sensor

connected to one of the inputs, you just need to translate the voltage value into the sensor value.

neMESYS Firmware Specification 73

8 Development Tools

8.1 Tools for RS232 Protocol Implementation
Implementing the RS232 industrial protocol with CRC checksum is somewhat more difficult than

implementing a simple ASCII protocol. To simplify and speed up the implementation, find errors in the

protocol implementation or to monitor the serial frames, we recommend the following tools:

8.1.1 EPOS Studio
The EPOS Studio software is a powerful tool for access to all device parameters of the pump drive via

RS232 or CAN interface. With the EPOS Studio Object Dictionary Tool it is possible to read and write

entries of the CANopen object dictionary. With this tool you can modify parameters or verify, if your

implementation has properly read or written certain parameters:

The EPOS Studio Command Analyzer will help you to analyze the low level RS232 protocol including

checksum calculation. With this tool you can execute certain commands and access the object

dictionary and you will see the corresponding serial protocol frames including CRC and stuff bytes.

74 neMESYS Firmware Specification

You can download the EPOS Studio software here: Download.

8.1.2 Serial Port Monitor
With a serial port monitor, you can monitor the low level data frames on the serial line.

This helps you to see and understand the RS232 frame structure and RS232 checksum calculation. It will

also help you, to find and trace errors in your serial protocol implementation. At CETONI we use this

serial port monitor: https://www.hhdsoftware.com/serial-port-monitor.

neMESYS Firmware Specification 75

https://www.hhdsoftware.com/serial-port-monitor
https://www.maxongroup.ch/medias/sys_master/root/8839888044062/EPOS-2-4-IDX-Setup.zip

8.1.3 Nemesys V4 RS232 Library Documentation
The Nemesys RS232 Library is an open source implementation of the industrial RS232 protocol in plain

C language. The library is well structured and well documented. If you understand C language a little bit,

then this library will be a valuable helper for you and you can use it as a template for your

implementation. You can browse the online documentation here.

If you would like to learn about the low level serial serial protocol implementation, then you should look

into the CSI library. If you would like to learn about the implementation of the Nemesys pump

functionality, then you should look into the Nemesys V1 API of the Nemesys RS232 Library.

8.2 Tools for CANopen implementation

8.2.1 EPOS Studio
The EPOS Studio software is a powerful tool for access to all device parameters of the pump drive via

RS232 or CAN interface. With the EPOS Studio Object Dictionary Tool it is possible to read and write

entries of the CANopen object dictionary. With this tool you can modify parameters or verify, if your

implementation has properly read or written certain parameters.

The software also allows you to execute positioning commands via its graphical interface.

76 neMESYS Firmware Specification

https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/group__nemesys__rs232__api.html
https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/csi_api_mainpage.html
https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/index.html
https://cetoni.de/downloads/manuals/Nemesys_RS232_Library/index.html

You can download the EPOS Studio software here: Download.

8.2.2 CETONI Elements CANopen Tools Plugin
The CETONI Elements software from CETONI has an CANopen-Tools Plugin which transforms the

software into a powerful tool to configure CANopen devices, access the CANopen object dictionary of

the Nemesys pumps and to monitor, log and analyze the CAN-Bus traffic and the CANopen protocol of

the pumps.

This tool will help you to read and write object dictionary entries and to monitor the CAN-bus traffic of

your PLC, PC or embedded control device connected to the Nemesys pumps.

Read the section CANopen Tools Workbench in the CETONI E lements manual to learn how to open and

use this tool.

neMESYS Firmware Specification 77

https://cetoni.de/downloads/manuals/CETONI_Elements_Manual_EN.pdf
https://cetoni.de/downloads/manuals/CETONI_Elements_Manual_EN.pdf
https://cetoni.com/cetoni-elements/
https://www.maxongroup.ch/medias/sys_master/root/8839888044062/EPOS-2-4-IDX-Setup.zip

	1 Summaries and directories
	1.1 Table of contents
	1.2 Change history

	2 About this Document
	2.1 Intended Purpose
	2.2 Target Audience
	2.3 Symbols and Signal Words Used

	3 System Overview
	3.1 General Device Architecture
	3.2 Object Dictionary

	4 CAN Communication
	4.1 Introduction
	4.2 Reference Model of Data Communication
	4.3 CAN-Bus
	4.3.1 CAN in the OSI reference model
	4.3.2 Bus topology and data rate
	4.3.3 Message transfer
	4.3.4 Bus access
	4.3.5 Length of the payload data
	4.3.6 Structure of CAN Frames
	4.3.7 Error Checking and Fault Confinement

	4.4 CANopen Basics
	4.4.1 Introduction
	4.4.2 Physical Structure of the CAN Network

	4.5 Communication Objects
	4.5.1 Service Data Objects – SDOs
	4.5.2 Process Data Objects – PDOs
	4.5.2.1 PDO Configuration Parameters
	4.5.2.2 PDO Mapping Parameters

	4.5.3 Sync Object

	4.6 Network Management – NMT
	4.6.1 NMT Services

	4.7 CANopen Error Handling – EMCY
	4.7.1 Principle
	4.7.2 Emergency Message Frame

	5 CANopen Serial Interface (CSI)
	5.1 Overview
	5.2 Physical Layer
	5.2.1 Electrical Standard
	5.2.2 Medium

	6 Industrial RS232 Protocol with CRC checksum
	6.1 Introduction
	6.2 Protocol and Flow Control
	6.2.1 Sequence of sending commands
	6.2.2 Sending a data frame
	6.2.3 Receiving a data frame

	6.3 Frame Structure
	6.3.1 Overview
	6.3.2 Header
	6.3.3 Data
	6.3.4 CRC

	6.4 Error Control
	6.4.1 CRC Calculation

	6.5 Transmission Byte Order
	6.6 Data Format
	6.7 Timeout Handling
	6.8 Slave (device) implementation state machine
	6.9 Master implementation state machine
	6.10 Command Reference
	6.10.1 Read Functions
	6.10.1.1 Read Object Dictionary Entry (4 Data Bytes and less)
	6.10.1.2 Read Object Dictionary Entry (5 Data Bytes and more)
	Initiate segmented read
	Segment read

	6.10.2 Write Functions
	6.10.2.1 Write Object Dictionary Entry (4 Data Bytes and less)
	6.10.2.2 Write Object Dictionary Entry (5 Data Bytes and more)
	Initiate segmented write
	Segment write

	6.11 Example Frames
	6.11.1 Reading Object 0x1000 – Device Type
	6.11.1.1 Calculating the CRC Checksum for The Read request Frame
	6.11.1.2 Verifying the CRC Checksum of the Read Response Frame

	6.11.2 Writing Object 0x1017 – Producer Heartbeat Time
	6.11.3 Reading Object 0x6041 – Statusword of a nemesys syringe pump
	6.11.4 Writing Object 0x6040 – Controlword of nemesys syringe pump
	6.11.5 Writing Object 0x607A – Target Position of nemesys syringe pump

	7 Pump Control
	7.1 Drive Control Overview
	7.2 Operating Modes
	7.3 Translation of volume / flow units
	7.3.1 Introduction
	7.3.2 Reading out device parameters
	7.3.2.1 Overview
	7.3.2.2 Velocity Notation Index
	7.3.2.3 Encoder Resolution
	7.3.2.4 Gear Factor

	7.3.3 Position value conversion
	7.3.3.1 Calculating the position conversion factor
	7.3.3.2 Conversion of position values
	7.3.3.3 Example position conversion

	7.3.4 Velocity value conversion
	7.3.4.1 Calculating the velocity conversion factor
	7.3.4.2 Conversion of velocity values
	7.3.4.3 Example velocity conversions

	7.3.5 Volume value conversions
	7.3.5.1 Calculation
	7.3.5.2 Example volume conversion

	7.3.6 Flow value conversions
	7.3.6.1 Calculation
	7.3.6.2 Example flow conversion

	7.4 Enabling drive
	7.4.1.1 Example flow conversion

	7.5 Initializing position counter (Homing)
	7.5.1 Overview
	7.5.2 Homing move
	7.5.2.1 Activating Homing Mode
	7.5.2.2 Setting homing method
	7.5.2.3 Setting homing Speeds
	7.5.2.4 Setting home Offset
	7.5.2.5 Starting Homing move

	7.5.3 Restoring position counter
	7.5.3.1 Overview
	7.5.3.2 Save Position Counter
	7.5.3.3 Restoring position counter

	7.6 Dosing
	7.6.1 Introduction
	7.6.2 Reading device configuration
	7.6.2.1 Overview
	7.6.2.2 Calculating the travel range
	7.6.2.3 Reading Axis Configuration

	7.6.3 Starting dosage
	7.6.4 Stopping dosage

	7.7 Valve Switching
	7.7.1 Switching internal Valve (Nemesys Low Pressure only)
	7.7.2 Switching external Valve connected to I/O interface

	7.8 Reading Pressure Sensor / Analog Inputs

	8 Development Tools
	8.1 Tools for RS232 Protocol Implementation
	8.1.1 EPOS Studio
	8.1.2 Serial Port Monitor
	8.1.3 Nemesys V4 RS232 Library Documentation

	8.2 Tools for CANopen implementation
	8.2.1 EPOS Studio
	8.2.2 CETONI Elements CANopen Tools Plugin

